Measurement of the Middle Ear Transfer Function in Cat, Chinchilla and Guinea Pig

  • Laurent Décory
  • Rodolphe B. Franke
  • Armand L. Dancer
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 87)


As part of a study aimed at determining the origines) of the interspecific differencies in susceptibility to noise (Décory, 1989), we have measured the transfer function of the middle ear (TFME) in the cat, the chinchilla and the guinea pig, For a given stimulus applied in front of the tympanic membrane (TM), the sound pressure at the base of the scala vestibuli (SV) has been recorded from 100 to 20000 Hz. Using these experimental data in relation to the measurements of the displacement of the umbo or the stapes performed by various authors we have calculated the acoustic power Wc) entering the cochlea and the acoustic imput impedance of the cochlea (Zc in these three species.


Sound Pressure Tympanic Membrane Basilar Membrane Acoustic Power Oval Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dancer, A., Franke, R., Buck, K. et Evrard, G. (1979) Etude de la transmission du stimulus acoustique au niveau du recepteur auditif chez Ie cobaye. ISL — R 113, 79.Google Scholar
  2. Dancer, A. and Franke. R. (1980) Intracochlear sound pressure measurements in guinea pigs. Hearing Res., 2. 191–205.Google Scholar
  3. Dallos, P. (1970) Low-frequency auditory characteristics: species dependance. J. Acoust. Soc. Am. 48, 490.Google Scholar
  4. Dancer, A. et Franke, R.(1982) Pression acoustique intracochJeaire: mesures directes et modeles. Acustica. 51. 18–28.Google Scholar
  5. Decory, L. (1989) Origines des differences interspecifiques de susceptibilite au bruit. These Docl. Univ. Bordeaux II. France.Google Scholar
  6. Franke, R., Dancer. A .. Lenoir, M., Evrard, O. et Buck. K. (1982) : Etude des phenomenes hydromccaniqucs cochlea ires aux basses et tres basses frequences chez Ie cobaye. ISL-R 121, 82.Google Scholar
  7. Guinan, J. and Peake, W.T. (1967) Middle ear characteristics of anesthetized cats. J. Acoust. Soc. Am., 41. 1237–1261.Google Scholar
  8. Lynch, T.J., Nedzelnitsky. V. and Peake. W.T. (1982) Input impedance of the cochlea in cat. J.Acoust. Soc.Am ., 72, 108–130.Google Scholar
  9. Manley, O.A. and Johnstone. B.M. (1974) Middle ear function in the guinea pig. J. Acousl. Soc. Am., 56, 571–576.Google Scholar
  10. Nedzelnitsky. V. (1980) Sound prcssures in the basal tum of the cat cochlea. J. Acoust. Soc. Am., 68, 1676–1689.Google Scholar
  11. Paluzzi, R.B., Yates. O.K. and Johnstone. B.M. (1989) The origin of the low-frequency microphonic in the first cochlear tum in guinea pig. Hear. Res. 39. 1771–188.Google Scholar
  12. Ruggero, M.A ., Robles. Rich ., N.C. and Costalupes. I.A. (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIlI nerve. J. Acousl. Soc. Am. 80. 1375–1393.Google Scholar
  13. Ruggero, M.A., Rich. N.C.. Robles. L. and Shivapuja. B.,. (1990) Middle ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J. Acoust. Soc. Am., 87, 1612–1629.Google Scholar
  14. Tonndorf, J., Khanna. S.M. and Fingerhood. B.J. (1966) The input impedance of the inner ear in cal. Ann. Otol. Rhinol. Laryngol. 75, 7521–763.Google Scholar
  15. Zwicker, E. and Terhardl E. (1980). Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. J. Acoust. Soc. Am., 68, 15231–1524.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Laurent Décory
    • 1
  • Rodolphe B. Franke
    • 1
  • Armand L. Dancer
    • 1
  1. 1.French-German Research InstitutSaint-Louis CédexFrance

Personalised recommendations