Skip to main content

A Model for Cochlear Vibrations Based on Feedback from Motile Outer Hair Cells

  • Conference paper
The Mechanics and Biophysics of Hearing

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 87))

Abstract

In a previous paper (Geisler, 1986), a model of the effect of outer hair cell (OHC) motility on the movements of a radial strip of the cochlear partition was presented. When that model, slightly modified and extended, is incorporated into a simulation of the entire cochlea, it produces output with characteristics which match, to a surprising degree, those of the observed (or inferred) vibration patterns of the basilar membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore, J.F. (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physiol. (London) 388, 323–347

    Google Scholar 

  • Brundin, L., Flock, A. and Canlon, Barbara (1989) Tuned motile responses of isolated cochlear outer hair cells. Acta Otolaryngol. Suppl. 467, 229–234.

    Google Scholar 

  • Geisler, C.D. (1976) Mathematical models of the mechanics of the inner ear. In: Handbook of Sensory Physiology, Vol. 5/3. (Eds. Keidel, W.D. and Neff, W.D.) Springer–Verlag, Berlin, pp. 391–415.

    Google Scholar 

  • Geisler, C.D. and Rhode, W.S. (1982) The phases of basilar-membrane vibrations. J. Acous!. Soc. Am. 71, 1201–1203.

    Google Scholar 

  • Geisler, C.D. (1986) A. model of the effect of outer hair cell motility on cochlear vibrations. Hearing Res. 24, 125–131.

    Google Scholar 

  • Khanna, S.M., Flock, A. and Ulfendahl, M. (1989) Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Otolarnygol. Suppl. 467, 151–156. Kolston, P J. and Smoorenburg, G.F. (1990) Does the cochlear amplifier produce reactive or resistive forces? (this volume).

    Google Scholar 

  • Liberman, M.C. and Kiang, N.Y.S. (1978) Acoustic trauma in cats: Cochlear pathology and auditory-nerve activity. Acta Oto-Iaryngol. Suppl. 358, 1–63.

    Google Scholar 

  • Liberman, M.C. and Dodds, L.W. (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Res. 16, 55–74.

    Google Scholar 

  • Mountain, D.C., Hubbard, A.E. and McMullen, T.A. (1983) Electromechanical processes in the cochlea. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, MA.) Delft University Press, Delft, pp. 119–126.

    Google Scholar 

  • Neely, S.T. and Kim, D.,. (1983) An active cochlear model showing sharp tuning and high sensitivity. Hearing Res. 9, 123–130.

    Google Scholar 

  • Robles, L., Ruggero, M.A. and Rich, N.C. (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. J. Acous!. Soc. Am. SO, 1364– 1374.

    Google Scholar 

  • Yates, G.K, Geisler, C.D., Patuzzi, R.B. and Johnstone, B.M. (1989) Saturation of receptor currents accounts for two-tone suppression. In: Cochlear Mechanisms (Eds: Wilson, J.P. and Kemp, D.T.) Plenum Publishing Co., New York, pp. 10-188.

    Google Scholar 

  • Zweig, G. (1990) The impedance of the organ of Corti (this volume).

    Google Scholar 

  • Ashmore, J.F. (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physiol. (London) 388, 323–347

    Google Scholar 

  • Brundin, L., Flock, A. and Canlon, Barbara (1989) Tuned motile responses of isolated cochlear outer hair cells. Acta Otolaryngol. Suppl. 467, 229–234.

    Google Scholar 

  • Geisler, C.D. (1976) Mathematical models of the mechanics of the inner ear. In: Handbook of Sensory Physiology, Vol. 5/3. (Eds. Keidel, W.D. and Neff, W.D.) Springer-Verlag, Berlin, pp. 391–415.

    Google Scholar 

  • Geisler, C.D. and Rhode, W.S. (1982) The phases of basilar-membrane vibrations. J. Acous!. Soc. Am. 71, 1201–1203.

    Google Scholar 

  • Geisler, C.D. (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hearing Res. 24, 125–131.

    Google Scholar 

  • Khanna, S.M., Flock, A. and Ulfendahl, M. (1989) Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Otolarnygol. Suppl. 467, 151–156.

    Google Scholar 

  • Kolston, P. J. and Smoorenburg, G.F. (1990) Does the cochlear amplifier produce reactive or resistive forces? (this volume).

    Google Scholar 

  • Liberman, M.C. and Kiang, N.Y.S. (1978) Acoustic trauma in cats: Cochlear pathology and auditory-nerve activity. Acta Oto-Iaryngol. Suppl. 358, 1–63.

    Google Scholar 

  • Liberman, M.C. and Dodds, L.W. (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Res. 16, 55–74.

    Google Scholar 

  • Mountain, D.C., Hubbard, AE. and McMullen, T A. (1983) Electromechanical processes in the cochlea. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, MA.) Delft University Press, Delft, pp. 119–126.

    Google Scholar 

  • Neely, S.T. and Kim, D.,. (1983) An active cochlear model showing sharp tuning and high sensitivity. Hearing Res. 9, 123–130.

    Google Scholar 

  • Robles, L., Ruggero, M.A. and Rich, N.C. (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. J. Acous!. Soc. Am. SO, 1364– 1374.

    Google Scholar 

  • Yates, G.K, Geisler, C.D., Patuzzi, R.B. and Johnstone, B.M. (1989) Saturation of receptor currents accounts for two-tone suppression. In: Cochlear Mechanisms (Eds: Wilson, J.P. and Kemp, D.T.) Plenum Publishing Co., New York, pp. 10-188.

    Google Scholar 

  • Zweig, G. (1990) The impedance of the organ of Corti (this volume).

    Google Scholar 

  • Strelioff, D., and Flock, A., (1984). Stiffness of sensory-hair bundles in the isolated guinea pig cochlea. Hear. Res., 15, 19–28.

    Google Scholar 

  • Zwislocki, J.J., and Cefaratti, L.K. (1989). Tectorial membrane IT: stiffness measurements in vivo. Hear. Res., 42, 211–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geisler, C.D., Shan, X. (1990). A Model for Cochlear Vibrations Based on Feedback from Motile Outer Hair Cells. In: Dallos, P., Geisler, C.D., Matthews, J.W., Ruggero, M.A., Steele, C.R. (eds) The Mechanics and Biophysics of Hearing. Lecture Notes in Biomathematics, vol 87. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4341-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4341-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97473-6

  • Online ISBN: 978-1-4757-4341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics