Abstract
To determine prime numbers, it is natural to ask for functions f (n) defined for all natural numbers n ≥ 1, which are computable in practice and produce some or all prime numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
FROBENIUS, F.G. Über quadratische Formen, die viele Primzahlen darstellen. Sitzungsber. d. Königl. Akad. d. Wiss. Zu 208 Bibliography Berlin, 1912, 966–980. Reprinted inGesammelte Abhandlungen, Vol. III, 573–587. Springer-Verlag, Berlin, 1968.
RABINOVITCH, G. Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. Proc. Fifth Intern. Congress Math., Cambridge, Vol. 1, 1912, 418–421.
SKOLEM, T. Diophantische Gleichungen. Springer-Verlag, Berlin, 1938.
MILLS, W.H. A prime-representing function. Bull. Amer. Math. Soc., 53, p. 604.
WRIGHT, E.M. A prime-representing function. Amer. Math. Monthly, 58, 1951, 616–618.
HEEGNER, K. Diophantische Analysis und Modulfunktionen. Math. Zeits., 56, 1952, 227–253.
PUTNAM, H. An unsolvable problem in number theory. J. Symb. Logic, 1960, 220–232.
COHN, H. Advanced Number Theory. Wiley, New York, 1962. Reprinted by Dover, New York, 1980.
WILLANS, C.P. On formulae for the nth prime. Math. Gaz., 48, 1964, 413–415.
BAKER, A. Linear forms in the logarithms of algebraic numbers. Mathematika, 13, 1966, 204–216.
STARK, H.M. A complete determination of the complex quadratic fields of class-number one. Michigan Math. J., 14, 1967, 1–27.
DUDLEY, U. History of a formula for primes. Amer. Math. Monthly, 76, 1969, 23–28.
GANDHI, J.M. Formulae for the nth prime. Proc. Washington State Univ. Conf. on Number Theory, 96–106. Wash. St. Univ., Pullman, Wash., 1971.
MATIJASEVIC, Yu.V. Diophantine representation of the set of prime numbers (in Russian). Dokl. Akad. Nauk SSSR, 196, 1971, 770–773. English translation by R. N. Goss, in Soviet Math. Dokl. 11, 1970, 354–358.
VANDEN EYNDEN, C. A proof of Gandhi’s formula for the nth prime. Amer. Math. Monthly, 79, 1972, p. 625.
DAVIS, M. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly, 80, 1973, 233–269.
KARST, E. New quadratic forms with high density of primes. Elem. d. Math., 28, 1973, 116–118.
GOLOMB, S.W. A direct interpetation of Gandhi’s formula. Amer. Math. Monthly, 81, 1974, 752–754.
HENDY, M.D. Prime quadratics associated with complex quadratic fields of class number two. Proc. Amer. Math. Soc., 43, 1974, 253–260.
ERNVALL, R. A formula for the least prime greater than a given integer. Elem. d. Math., 30, 1975, 13–14.
JONES, J.P. Diophantine representation of the Fibonacci numbers. Fibonacci Quart., 13, 1975, 84–88.
MATIJASEVIC, Yu.V. Reduction of an arbitrary diophantine equation to one in 13 unknowns. Acta Arithm., 27, 1975, 521–553.
JONES, J.P., SATO, D., WADA, H. & WIENS, D. Diophantine representation of the set of prime numbers. Amer. Math. Monthly, 83, 1976, 449–464.
MATIJASEVIC, Yu.V. Primes are nonnegative values of a polynomial in 10 variables. Zapiski Sem. Leningrad Mat. Inst. Steklov, 68, 1977, 62–82. English translation by L. Guy& J.P. Jones, J. Soviet Math., 15, 1981, 33–44.
JONES, J.P. Diophantine representation of Mersenne and Fermat primes, Act. Arith., 35, 1979, 209–221.
RIBENBOIM, P. Euler’s famous prime generating polynomial and the class number of imaginary quadratic fields. L’Enseign. Math., 34, 1988, 23–42.
GOETGHELUCK, P. On cubic polynomials giving many primes. Elem. d. Math., 44, 1989, 70–73.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1991 Paulo Ribenboim
About this chapter
Cite this chapter
Ribenboim, P. (1991). Are There Functions Defining Prime Numbers?. In: The Little Book of Big Primes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4330-2_4
Download citation
DOI: https://doi.org/10.1007/978-1-4757-4330-2_4
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-97508-5
Online ISBN: 978-1-4757-4330-2
eBook Packages: Springer Book Archive