Advertisement

How to Recognize Whether a Natural Number is a Prime

  • Paulo Ribenboim

Abstract

In the art. 329 of Disquisitiones Arithmeticae, Gauss (1801) wrote:

The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic... The dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated.

Keywords

Prime Factor Prime Number Fibonacci Number Fermat Number Legendre Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1801.
    GAUSS, C.F. Disquisitiones Arithmeticae. G. Fleischer, Leipzig, 1801. English translation by A.A. Clarke. Yale Univ. Press, New Haven, 1966. Revised English translation by W.C. Waterhouse. Springer-Verlag, New York, 1986.Google Scholar
  2. 1844.
    EISENSTEIN, F.G. Aufgaben. Journal f.d. reine u. angew. Math., 27, 1844, p. 87. Reprinted inMathematische Werke, Vol. I, p. 112. Chelsea, Bronx, N.Y., 1975.Google Scholar
  3. 1852.
    KUMMER, E.E. Über die Erganzungssätze zu den allgemeinem Reciprocitätsgesetzen. Journal f.d. reine u. angew. Math., 44, 1852, 93–146. Reprinted inCollected Papers, Vol. I, (edited by A. Weil, 485–538). Springer-Verlag, New York, 1975.Google Scholar
  4. 1876.
    LUCAS, E. Sur la recherche des grands nombres premiers. Assoc. Française p. l’Avanc. des Sciences, 5, 1876, 61–68.Google Scholar
  5. 1877.
    PEPIN, T. Sur la formule 2’ + 1. C.R. Acad. Sci. Paris, 65, 1877, 329–331.Google Scholar
  6. 1878.
    LUCAS, E. Théorie des fonctions numériques simplement périodiques. Amer. J. Math., 1, 1878, 184–240 and 289–321.Google Scholar
  7. 1878.
    PROTH, F. Théorèmes sur les nombres premiers. C.R. Acad. Sci. Paris, 85, 1877, 329–331.Google Scholar
  8. 1886.
    BANG, A.S. Taltheoretiske Underso/gelser. Tidskrift f. Math., ser.5, 4, 1886, 70–80 and 130–137.Google Scholar
  9. 1891.
    LUCAS, E. Théorie des Nombres. Gauthier-Villars, Paris, 1891. Reprinted by A. Blanchard, Paris, 1961.Google Scholar
  10. 1892.
    ZSIGMONDY, K. Zur Theorie der Potenzreste. Monatsh. f. Math., 3, 1892, 265–284.MathSciNetMATHCrossRefGoogle Scholar
  11. 1903.
    MALO, E. Nombres qui, sans être premiers, vérifient exceptionnellement une congruence de Fermat. L’Interm. des Math., 10, 1903, p. 88.Google Scholar
  12. 1904.
    BIRKHOFF, G.D. & VANDIVER, H.S. On the integral divisors of an —bn. Annals of Math., (2), 5, 1904, 173–180.MathSciNetCrossRefGoogle Scholar
  13. 1904.
    CIPOLLA, M. Sui numeri compostiP, the verificano la congruenza di FermataP-1–1 (modP). Annali di Matematica, (3), 9, 1904, 139–160.CrossRefGoogle Scholar
  14. 1912.
    CARMICHAEL, R.D. On composite numbersP which satisfy the Fermat congruenceaP-1–1 (modP). Amer. Math. Monthly, 19, 1912, 22–27.MathSciNetCrossRefGoogle Scholar
  15. 1913.
    CARMICHAEL, R.D. On the numerical factors of the arithmetic forms an + ßn. Annals of Math., 15, 1913, 30–70.MATHCrossRefGoogle Scholar
  16. 1913.
    DICKSON, L.E. Finiteness of odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math., 35, 1913, 413–422.Reprinted inThe Collected Mathematical Papers(edited by A.A. Albert), Vol. I, 349–358.Chelsea, Bronx, N.Y.,1975. Google Scholar
  17. 1914.
    POCKLINGTON, H.C. The determination of the prime or composite nature of large numbers by Fermat’s theorem. Proc. Cambridge Phil. Soc.,18, 1914/6, 29–30.Google Scholar
  18. 1921.
    PIRANDELLO, L. Fu Mattia Pascal.Bemporad & Figlio, Firenze, 1921, 169 (multiple editions and translations into many languages; especially recommended.)Google Scholar
  19. 1922.
    CARMICHAEL, R.D. Note on Euler’s 0-function. Bull. Amer. Math. Soc., 28, 1922, 109–110.MATHGoogle Scholar
  20. 1925.
    CUNNINGHAM, A.J.C. & WOODALL, H.J. Factorization ofyn + 1, y = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers(n). Hodgson, London, 1925.Google Scholar
  21. 1929.
    PILLAI, S.S. On some functions connected with0(n). Bull. Amer. Math. Soc., 35, 1929, 832–836.MathSciNetMATHCrossRefGoogle Scholar
  22. 1930.
    LEHMER, D.H. An extended theory of Lucas’ functions. Annals of Math.,31, 1930, 419–448. Reprinted inSelected Papers(edited by D. McCarthy), Vol. I, 11–48.Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada,1981. Google Scholar
  23. 1932.
    LEHMER, D.H. On Euler’s totient function. Bull. Amer. Math. Soc., 38, 1932, 745–757. Reprinted inSelected Papers (edited by D. McCarthy), Vol. I, 319–325. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  24. 1932.
    WESTERN, A.E. On Lucas’ and Pepin’s tests for the primeness of Mersenne’s numbers. J. London Math. Soc., 7, 1932, 130–137.MathSciNetCrossRefGoogle Scholar
  25. 1935.
    ARCHIBALD, R.C. Mersenne’s numbers. Scripta Math., 3, 1935, 112–119.Google Scholar
  26. 1935.
    LEHMER, D.H. On Lucas’ test for the primality of Mersenne numbers. J. London Math. Soc., 10, 1935, 162–165. Reprinted inSelected Papers (edited by D. McCarthy), Vol. I, 86–89. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  27. 1936.
    LEHMER, D.H. On the converse of Fermat’s theorem. Amer. Math. Monthly, 43, 1936, Reprinted inSelected Papers (edited by D. McCarthy), Vol. I, 90–95. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  28. 1939.
    CHERNICK, J. On Fermat’s simple theorem. Bull. Amer. Math. Soc., 45, 1939, 269–274.MathSciNetCrossRefGoogle Scholar
  29. 1944.
    PILLAI, S.S. On the smallest primitive root of a prime. J. Indian Math. Soc., (N.S.), 8, 1944, 14–17.MathSciNetMATHGoogle Scholar
  30. 1944.
    SCHUH, F. Can n–1 be divisible by 0(n) when n is composite? (in Dutch). Mathematica, Zutphen, B, 12, 1944, 102–107.MathSciNetMATHGoogle Scholar
  31. 1945.
    KAPLANSKY, I. Lucas’ tests for Mersenne numbers. Amer. Math. Monthly, 52, 1945, 188–190.MathSciNetMATHCrossRefGoogle Scholar
  32. 1947.
    KLEE, V.L. On a conjecture of Carmichael. Bull. Amer. Math. Soc., 53, 1947, 1183–1186.MathSciNetMATHCrossRefGoogle Scholar
  33. 1947.
    LEHMER, D.H. On the factors of 2n + 1. Bull. Amer. Math. Soc., 53, 1947, 164–167. Reprinted inSelected Papers (edited by D. McCarthy), Vol. III, 1081–1084. Ch. Baggage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  34. 1948.
    ORE, O. On the averages of the divisors of a number. Amer. Math. Monthly, 55, 1948, 615–619.MathSciNetMATHCrossRefGoogle Scholar
  35. 1949.
    ERDÖS, P. On the convers of Fermat’s theorem. Amer. Math. Monthly, 56, 1949, 623–624.MathSciNetMATHCrossRefGoogle Scholar
  36. 1949.
    FRIDLENDER, V.R. On the least nth power non-residue (in Russian). Doklady Akad. Nauk SSSR (N.S.), 66, 1949, 351–352.MathSciNetMATHGoogle Scholar
  37. 1949.
    SHAPIRO, H.N. Note on a theorem of Dickson. Bull. Amer. Math. Soc., 55, 1949, 450–452.MATHCrossRefGoogle Scholar
  38. 1950.
    BEEGER, N.G.W.H. On composite numbers n for which an-1–1 (mod n), for every a, prime to n. Scripta Math., 16, 1950, 133–135.MathSciNetMATHGoogle Scholar
  39. 1950.
    GIUGA, G. Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat., (3), 14 (83), 1950, 511–528.Google Scholar
  40. 1950.
    GUPTA, H. On a problem of Erdös. Amer. Math. Monthly, 57, 1950, 326–329.MathSciNetMATHCrossRefGoogle Scholar
  41. 1950.
    KANOLD, H.J. Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme, II. Journal f.d. reine u. angew. Math., 187, 1950, 355–366.MathSciNetGoogle Scholar
  42. 1950.
    SALIÉ, H. Uber den kleinsten positiven quadratischen Nichtrest einer Primzahl. Math. Nachr., 3, 1949, 7–8.Google Scholar
  43. 1950.
    SOMAYAJULU, B.S.K.R. On Euler’s totient function0(n). Math. Student, 18, 1950, 31–32.MathSciNetGoogle Scholar
  44. 1951.
    BEEGER, N.G.W.H. On even numbers m dividing 2m —2. Amer. Math. Monthly, 58, 1951, 553–555.MathSciNetMATHCrossRefGoogle Scholar
  45. 1952.
    DUPARC, H.J.A. On Carmichael numbers. Simon Stevin, 29, 1952, 21–24.MathSciNetMATHGoogle Scholar
  46. 1952.
    GRÜN, O. Uber ungerade vollkommene Zahlen. Math. Zeits., 55, 1952, 353–354.MATHCrossRefGoogle Scholar
  47. 1954.
    KANOLD, H.J. Uber die Dichten der Mengen der vollkommenen und der befreundeten Zahlen. Math. Zeits., 61, 1954, 180–185.MathSciNetMATHGoogle Scholar
  48. 1954.
    ROBINSON, R.M. Mersenne and Fermat numbers. Proc. Amer. Math. Soc., 5, 1954, 842–846.MATHCrossRefGoogle Scholar
  49. 1954.
    SCHINZEL, A. Quelques théorèmes sur les fonctions 0(n) etQ(n). Bull. Acad. Polon. Sci., Cl. III, 2, 1954, 467–469.MathSciNetMATHGoogle Scholar
  50. 1954.
    SCHINZEL, A. Generalization of a theorem of B.S.K.R. Somayajulu on the Euler’s function 0(n). Ganita, 5, 1954, 123–128.MathSciNetMATHGoogle Scholar
  51. 1954.
    SCHINZEL, A. & SIERPII-TSKI, W. Sur quelques propriétés des fonctionsq(n) eta(n). Bull. Acad. Polon. Sci., Cl. III, 2, 1954, 463–466.MathSciNetMATHGoogle Scholar
  52. 1955.
    ARTIN, E. The orders of the linear groups. Comm. Pure & Appl. Math., 8, 1955, 355–365. Reprinted inCollected Papers (edited by S. Lang & J.T. Tate), 387–397. Addison-Wesley, Reading, Mass., 1965.Google Scholar
  53. 1955.
    LABORDE, P. A note on the even perfect numbers. Amer. Math. Monthly, 62, 1955, 348–349.MathSciNetMATHCrossRefGoogle Scholar
  54. 1956.
    SCHINZEL, A. Sur l’équation0(x) = m. Elem. Math., 11, 1956, 75–78.MathSciNetMATHGoogle Scholar
  55. 1956.
    SCHINZEL, A. Sur un problème concernant la fonction0(n). Czechoslovak Math. J., 6, (81), 1956, 164–165.MathSciNetGoogle Scholar
  56. 1958.
    JARDEN, D. Recurring Sequences. Riveon Lematematika, Jerusalem, 1958 (3rd edition, Fibonacci Assoc., San Jose, CA, 1973 ).Google Scholar
  57. 1958.
    SIERPIINTSKI, W. Sur les nombres premiers de la formen n + 1. L’Enseign. Math., (2), 4, 1958, 211–212.Google Scholar
  58. 1959.
    ROTKIEWICZ, A. Sur les nombres pairs a pour lesquels les nombresanb—abn, respectivement an-1-bn-1 sont divisibles par n. Rend. Circ. Mat. Palermo, (2), 8, 1959, 341–342.MathSciNetCrossRefGoogle Scholar
  59. 1959.
    SCHINZEL, A. Sur les nombres composés n qui divisent an–a. Rend. Circ. Mat. Palermo, (2), 7, 1958, 1–5.Google Scholar
  60. 1959.
    SCHINZEL, A. & WAKULICZ, A. Sur l’équation0(x+ k) = 0(x), II. Acta Arithm., 5, 1959, 425–426.MathSciNetMATHGoogle Scholar
  61. 1959.
    WIRSING, E. Bemerkung zu der Arbeit über vollkommene Zahlen. Math. Ann., 137, 1959, 316–318.MathSciNetMATHGoogle Scholar
  62. 1960.
    INKERI, K. Tests for primality. Annales Acad. Sci. Fennicae, Ser. A, I, 279, Helsinki, 1960, 19 pages.Google Scholar
  63. 1961.
    WARD, M. The prime divisors of Fibonacci numbers. Pacific J. Math., 11, 1961, 379–389.MATHGoogle Scholar
  64. 1962.
    BURGESS, D.A. On character sums and L-series. Proc. London Math. Soc., (3), 2, 1962, 193–206.MathSciNetMATHCrossRefGoogle Scholar
  65. 1962.
    CROCKER, R. A theorem on pseudo-primes. Amer. Math. Monthly, 69, 1962, p. 540.MathSciNetMATHCrossRefGoogle Scholar
  66. 1962.
    SCHINZEL, A. The intrinsic divisors of Lehmer numbers in the case of negative discriminant Arkiv. för Mat., 4, 1962, 413–416.MathSciNetMATHCrossRefGoogle Scholar
  67. 1962.
    SCHINZEL, A. On primitive prime factors of a’ -P. Proc. Cambridge Phil. Soc., 58, 1962, 555–562.MathSciNetMATHCrossRefGoogle Scholar
  68. 1962.
    SHANKS, D. Solved and Unsolved Problems in Number Theory. Spartan, Washington, 1962. 3rd edition by Chelsea, Bronx, N.Y., 1985.Google Scholar
  69. 1963.
    SCHINZEL, A. On primitive prime factors of Lehmer numbers, I. Acta Arithm., 8, 1963, 211–223.Google Scholar
  70. 1963.
    SCHINZEL, A. On primitive prime factors of Lehmer numbers, II. Acta Arithm, 8, 1963, 251–257.MathSciNetGoogle Scholar
  71. 1964.
    LEHMER, E. On the infinitude of Fibonacci pseudo-primes. Fibonacci Quart., 2, 1964, 229–230.MATHGoogle Scholar
  72. 1965.
    ROTKIEWICZ, A. Sur les nombres de Mersenne dépourvus de facteurs carrés et sur les nombres naturels n tels que n2 l 2n -2. Matem. Vesnik (Beograd), 2, (17), 1965, 78–80.MathSciNetGoogle Scholar
  73. 1966.
    GROSSWALD, E. Topics from the Theory of Numbers. Macmillan, New York, 1966; 2nd edition Birkhäuser, Boston, 1984.Google Scholar
  74. 1966.
    MUSKAT, J.B. On divisors of odd perfect numbers. Math. Comp., 20, 1966, 141–144.MathSciNetMATHCrossRefGoogle Scholar
  75. 1967.
    BRILLHART, J. & SELFRIDGE, J.L. Some factorizations of 2’n + 1 and related results. Math. Comp., 21, 1967, 87–96 and p. 751.Google Scholar
  76. 1967.
    MOZZOCHI, C.J. A simple proof of the Chinese remainder theorem. Amer. Math. Monthly, 74, 1967, p. 998.MathSciNetMATHCrossRefGoogle Scholar
  77. 1970.
    LIEUWENS, E. Do there exist composite numbers for whichkO(M) =M − 1 holds? Nieuw. Arch. Wisk., (3), 18, 1970, 165–169.MathSciNetMATHGoogle Scholar
  78. 1970.
    PARBERRY, E.A. On primes and pseudo-primes related to the Fibonacci sequence. Fibonacci Quart., 8, 1970, 49–60.MathSciNetMATHGoogle Scholar
  79. 1971.
    LIEUWENS, E. Fermat Pseudo-Primes. Ph.D. Thesis, Delft, 1971.MATHGoogle Scholar
  80. 1971.
    MORRISON, M.A. & BRILLHART, J. The factorization ofF7. Bull. Amer. Math. Soc., 77, 1971, p. 264.MathSciNetMATHCrossRefGoogle Scholar
  81. 1972.
    HAGIS, Jr., P. & McDANIEL, W.L. A new result concerning the structure of odd perfect numbers. Proc. Amer. Math. Soc., 32, 1972, 13–15.MathSciNetMATHCrossRefGoogle Scholar
  82. 1972.
    MILLS, W.H. On a conjecture of Ore. Proc. 1972 Number Th. Conf. in Boulder, p. 142–146.Google Scholar
  83. 1972.
    RIBENBOIM, P. Algebraic Numbers. Wiley-Interscience, New York, 1972.MATHGoogle Scholar
  84. 1972.
    ROTKIEWICZ, A. Pseudoprime Numbers and their Generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972.Google Scholar
  85. 1973.
    ROTKIEWICZ, A. On pseudoprimes with respect to the Lucas sequences. Bull. Acad. Polon. Sci., 21, 1973, 793–797.MathSciNetMATHGoogle Scholar
  86. 1974.
    LIGH, S. & NEAL, L. A note on Mersenne numbers. Math. Mag., 47, 1974, 231–233.MathSciNetMATHCrossRefGoogle Scholar
  87. 1974.
    POMERANCE, C. On Carmichael’s conjecture. Proc. Amer. Math. Soc., 43, 1974, 297–298.MathSciNetMATHGoogle Scholar
  88. 1974.
    SCHINZEL, A. Primitive divisors of the expression An—B n in algebraic number fields. Journal f. d. reine u. angew. Math., 268 /269, 1974, 27–33.MathSciNetGoogle Scholar
  89. 1974.
    SINHA, T.N. Note on perfect numbers. Math. Student, 42, 1974, p. 336.Google Scholar
  90. 1975.
    BRILLHART, J., LEHMER, D.H. & SELFRIDGE, J.L. New primality criteria and factorizations of2m + 1. Math. Comp., 29, 1975, 620–647.MathSciNetMATHGoogle Scholar
  91. 1975.
    GUY, R.K. How to factor a number Proc. Fifth Manitoba Conf. Numerical Math., 1975, 49–89 (Congressus Numerantium, XVI, Winnipeg, Manitoba, 1976 ).Google Scholar
  92. 1975.
    HAGIS, Jr., P. & McDANIEL, W.L. On the largest prime divisor of an odd perfect number Math. Comp., 29, 1975, 922–924.MathSciNetMATHCrossRefGoogle Scholar
  93. 1975.
    MORRISON, M.A. A note on primality testing using Lucas sequences. Math. Comp., 29, 1975, 181–182.MATHGoogle Scholar
  94. 1975.
    POMERANCE, C. The second largest prime factor of an odd perfect number Math. Comp., 29, 1975, 914–921.MathSciNetMATHCrossRefGoogle Scholar
  95. 1975.
    PRATT, V.R. Every prime has a succinct certificate. SIAM J. Comput., 4, 1975, 214–220.MathSciNetMATHCrossRefGoogle Scholar
  96. 1976.
    BUXTON, M. & ELMORE, S. An extension of lower bounds for odd perfect numbers. Notices Amer. Math. Soc., 23, 1976, p. A55.Google Scholar
  97. 1976.
    DIFFIE, W. & HELLMAN, M.E. New directions in cryptography. IEEE Trans. on Inf. Th., IT-22Google Scholar
  98. 1976.
    LEHMER, D.H. Strong Carmichael numbers. J. Austral. Math. Soc., A, 21, 1976, 508–510. Reprinted inSelected Papers (edited by D. McCarthy), Vol. I, 140142. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  99. 1976.
    MENDELSOHN, N.S. The equation0(x) =k. Math. Mag., 49, 1976, 37–39.MathSciNetMATHCrossRefGoogle Scholar
  100. 1976.
    MILLER, G.L. Riemann’s hypothesis and tests for primality. J. Comp. Syst. Sci., 13, 1976, 300–317.MATHGoogle Scholar
  101. 1976.
    RABIN, M.O. Probabilistic algorithms. InAlgorithms and Complexity (edited by J.F. Traub ), 21–39. Academic Press, New York, 1976.Google Scholar
  102. 1976.
    YORINAGA, M. On a congruential property of Fibonacci numbers. Numerical experiments. Considerations and Remarks. Math. J. Okayama Univ., 19, 1976, 5–10; 11–17.MathSciNetGoogle Scholar
  103. 1977.
    MALM, D.E.G. On Monte-Carlo primality tests. Notices Amer. Math. Soc.,24, 1977, A-529, abstract 77T-A22.Google Scholar
  104. 1977.
    POMERANCE, C. On composite n for which0(n) in -1. II Pacific J. Math., 69, 1977, 177–186.MathSciNetGoogle Scholar
  105. 1977.
    POMERANCE, C. Multiply perfect numbers, Mersenne primes and effective computability. Math. Ann., 226, 1977, 195–206.MathSciNetMATHGoogle Scholar
  106. 1977.
    SOLOVAY, R. & STRASSEN, V. A fast Monte-Carlo test for primality. SIAM J. Comput., 6, 1977, 84–85.MathSciNetMATHGoogle Scholar
  107. 1977.
    STEWART, C.L. Primitive divisors of Lucas and Lehmer numbers. InTranscendence Theory: Advances and Applications (edited by A. Baker & D.W. Masser ), 79–92. Academic Press, London, 1977.Google Scholar
  108. 1977.
    WILLIAMS, H.C. On numbers analogous to the Carmichael numbers. Can. Math. Bull., 20, 1977, 133–143.MATHCrossRefGoogle Scholar
  109. 1978.
    KISS, P. & PHONG, B.M. On a function concerning second order recurrences. Ann. Univ. Sci. Budapest, 21, 1978, 119–122.MATHGoogle Scholar
  110. 1978.
    RIVEST, R.L. Remarks on a proposed cryptanalytic attack on the M.I.T. public-key cryptosystem. Cryptologia, 2, 19–78.Google Scholar
  111. 1978.
    RIVEST, R.L., SHAMIR, A. & ADLEMAN, L.M. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21, 1978, 120–126.MathSciNetMATHGoogle Scholar
  112. 1978.
    WILLIAMS, H.C. Primality testing on a computer. Ars Comb., 5, 1978, 127–185.MATHGoogle Scholar
  113. 1978.
    YORINAGA, M. Numerical computation of Carmichael numbers. Math. J. Okayama Univ., 20, 1978, 151–163.MathSciNetMATHGoogle Scholar
  114. 1979.
    CHEIN, E.Z. Non-existence of odd perfect numbers of the form4 1 q?.. 4 6 and 5a142... 49. Ph.D. Thesis, Pennsylvania State Univ., 1979.Google Scholar
  115. 1980.
    BAILLIE, R. & WAGSTAFF, Jr., S.S. Lucas pseudo-primes. Math. Comp., 35, 1980, 1391–1417.MathSciNetMATHCrossRefGoogle Scholar
  116. 1980.
    COHEN, G.L. & HAGIS, Jr., P. On the number of prime factors of n if 0(n) (n − 1). Nieuw Arch. Wisk., (3), 28, 1980, 177–185.MathSciNetMATHGoogle Scholar
  117. 1980.
    HAGIS, Jr., P. Outline of a proof that every odd perfect number has at least eight prime factors. Math. Comp., 35, 1980, 1027–1032.MathSciNetMATHCrossRefGoogle Scholar
  118. 1980.
    MONIER, L. Evaluation and comparison of two efficient probabilistic primality testing algorithms. Theoret. Comput. Sci., 12, 1980, 97–108.MathSciNetMATHGoogle Scholar
  119. 1980.
    POMERANCE, C., SELFRIDGE, J.L. & WAGSTAFF, Jr., S.S. The pseudoprimes to 25.109. Math. Comp., 35, 1980, 1003–1026.MathSciNetMATHGoogle Scholar
  120. 1980.
    RABIN, M.O. Probabilistic algorithm for testing primality. J. Nb. Th., 12, 1980, 128–138.MathSciNetMATHGoogle Scholar
  121. 1980.
    WAGSTAFF, Jr., S.S. Large Carmichael numbers. Math. J. Okayama Univ., 22, 1980, 33–41.MathSciNetMATHGoogle Scholar
  122. 1980.
    WALL, D.W. Conditions for0(N) to properly divideN-1. In ACollection of Manuscripts Related to the Fibonacci Sequence (edited by V.E. Hoggatt & M. Bicknell-Johnson), 205–208. 18th Anniv Vol., Fibonacci Assoc., San Jose, 1980.Google Scholar
  123. 1981.
    BRENT, R.P. & POLLARD, J.M. Factorization of the eighth Fermat number. Math. Comp., 36, 1981, 627–630.MathSciNetMATHCrossRefGoogle Scholar
  124. 1981.
    GROSSWALD, E. On Burgess’ bound for primitive roots modulo primes and an application to I’(p). Amer. J. Math., 103, 1981, 1171–1183.MathSciNetMATHCrossRefGoogle Scholar
  125. 1981.
    LENSTRA, Jr., H.W. Primality testing algorithms (after Adleman, Rumely and Williams) In Séminaire Bourbaki, exposé No. 576. Lecture Notes in Math., #901, 243–257. Springer-Verlag, Berlin, 1981.Google Scholar
  126. 1981.
    LÜNEBURG, H. Ein einfacher Beweis für den Satz von Zsigmondy über primitive Primteiler vonA N–1. InGeometries and Groups (edited by M. Aigner & D. Jungnickel). Lecture Notes in Math., #893, 219–222. Springer-Verlag, New York, 1981.Google Scholar
  127. 1982.
    BRENT, R.P. Succinct proofs of primality for the factors of some Fermat numbers. Math. Comp., 38, 1982, 253–255.MathSciNetMATHGoogle Scholar
  128. 1982.
    LENSTRA, Jr., H.W. Primality testing. InComputational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 55–77. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  129. 1982.
    MASAI, P. & VALETTE, A. A lower bound for a counterexample in Carmichael’s conjecture. Boll. Un. Mat. Ital., (6), 1-A, 1982, 313–316.Google Scholar
  130. 1982.
    WOODS, D. & HUENEMANN, J. Larger Carmichael numbers. Comput. Math. & Appl., 8, 1982, 215–216.MathSciNetMATHGoogle Scholar
  131. 1983.
    ADLEMAN, L.M., POMERANCE, C. & RUMELY, R.S. On distinguishing prime numbers from composite numbers. Annals of Math., (2), 117, 1983, 173–206.MathSciNetMATHCrossRefGoogle Scholar
  132. 1983.
    BRILLHART, J., LEHMER, D.H., SELFRIDGE, J.L., TUCKERMAN, B. & WAGSTAFF, Jr., S.S. Factorizations of bm±1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to High Powers. Contemporary Math., Vol. 22, Amer. Math. Soc., Providence, R.I., 1983, second edition, 1988 ).Google Scholar
  133. 1983.
    HAGIS, Jr., P. Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors. Math. Comp., 40, 1983, 399–404.MathSciNetMATHGoogle Scholar
  134. 1983.
    POMERANCE, C. & WAGSTAFF, Jr., S.S. Implementation of the continued fraction integer factoring algorithm. Congressus Numerantium, 37, 1983, 99–118.MathSciNetGoogle Scholar
  135. 1983.
    POWELL, B. Problem 6420 (On primitive roots). Amer. Math. Monthly, 90, 1983, p. 60.CrossRefGoogle Scholar
  136. 1983.
    SINGMASTER, D. Some Lucas pseudoprimes. Abstracts Amer. Math. Soc.,4, 1983, No. 83T-10–146, p. 197.Google Scholar
  137. 1983.
    YATES, S. Titanic primes. J. Recr. Math.,16, 1983/4, 250–260.Google Scholar
  138. 1984.
    COHEN, H. & LENSTRA, Jr., H.W. Primality testing and Jacobi sums Math. Comp., 42, 1984, 297–330.MathSciNetMATHCrossRefGoogle Scholar
  139. 1984.
    DIXON, J.D. Factorization and primality tests. Amer. Math. Monthly, 91, 1984, 333–352.MATHCrossRefGoogle Scholar
  140. 1984.
    KEARNES, K. Solution of problem 6420. Amer. Math. Monthly, 91, 1984, p. 521.MathSciNetGoogle Scholar
  141. 1984.
    NICOLAS, J.L. Tests de primalité. Expo. Math., 2, 1984, 223–234.MathSciNetMATHGoogle Scholar
  142. 1984.
    POMERANCE, C.Lecture Notes on Primality Testing and Factoring(Notes by G.M. Gagola Jr.). Math. Assoc. America, Notes, No.4, 1984, 34 pages.Google Scholar
  143. 1984.
    WILLIAMS, H.C. An overview of factoring. InAdvances in Cryptology (edited by D. Chaum ), 71–80. Plenum, New York, 1984.CrossRefGoogle Scholar
  144. 1984.
    YATES, S. Sinkers of the Titanics. J. Recr. Math.,17, 1984/5, 268–274.Google Scholar
  145. 1985.
    BEDOCCHI, E. Note on a conjecture on prime numbers. Rev. Mat. Univ. Parma (4), 11, 1985, 229–236.MathSciNetMATHGoogle Scholar
  146. 1985.
    RIESEL, H. Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston, 1985.MATHCrossRefGoogle Scholar
  147. 1985.
    WAGON, S. Perfect numbers. Math. Intelligencer, 7, No. 2, 1985, 66–68.MathSciNetMATHCrossRefGoogle Scholar
  148. 1986.
    KISS, P., PHONG, B.M., & LIEUWENS, E. On Lucas pseudoprimes which are products ofs primes. InFibonacci Numbers and their Applications edited by A.N. Philippou, G.E. Bergum & A.F. Horadam), 131–139. Reidel, Dordrecht, 1986.CrossRefGoogle Scholar
  149. 1986.
    WAGON, S. Carmichael’s “Empirical Theorem”. Math. Intelligencer, 8, No. 2, 1986, 61–62.MathSciNetMATHCrossRefGoogle Scholar
  150. 1986.
    WAGON, S. Primality testing. Math. Intelligencer, 8, No. 3, 1986, 58–61.MathSciNetMATHCrossRefGoogle Scholar
  151. 1987.
    COHEN, G.L. On the largest component of an odd perfect number J Austral. Math. Soc. (Ser. A), 42, 1987, 280–286.MathSciNetMATHCrossRefGoogle Scholar
  152. 1987.
    KOBLITZ, N. A Course in Number Theory and Cryptography. Springer-Verlag, New York, 1987.MATHCrossRefGoogle Scholar
  153. 1987.
    LENSTRA, Jr., H.W. Factoring integers with elliptic curves. Annals Math, 126, 1987, 649–673.MathSciNetMATHCrossRefGoogle Scholar
  154. 1988.
    BRILLHART, J., MONTGOMERY, P.L. & SILVER-MAN, R.D. Tables of Fibonacci and Lucas factorizations, and Supplement. Math. Comp., 50, 1988, 251–260 and S-1 to S-15.Google Scholar
  155. 1988.
    YOUNG, J. & BUELL, D.A. The twentieth Fermat number is composite. Math. Comp., 50, 1988, 261–262.MathSciNetMATHCrossRefGoogle Scholar
  156. 1989.
    BATEMAN, P.T., SELFRIDGE, J.L., & WAGSTAFF, Jr., S.S. The New Mersenne Conjecture, Amer. Math. Monthly, 96, 1989, 125–128.MathSciNetMATHCrossRefGoogle Scholar
  157. 1989.
    BRENT, R.A. & COHEN, G.L. A new lower bound for odd perfect numbers. Math. Comp., 53, 1989, 431–437 and S-7 to S-24.Google Scholar
  158. 1989.
    DUBNER, H. A new method for producing large Carmichael numbers. Math. Comp., 53, 1989, 411–414.MathSciNetMATHGoogle Scholar
  159. 1989.
    LEMOS, M.Criptografia, úmeros Primos e Algoritmos.(17° Colóquio Brasileiro de Matematica) Inst. Mat. Pura e Aplic., Rio de Janeiro, 1989, 72 pages.Google Scholar
  160. 1989.
    LENSTRA, A.K. & LENSTRA, Jr., H.W. Algorithms in number theory, in Handbook of Theoretical Computer Science, North-Holland, Amsterdam, 1989.Google Scholar
  161. 1990.
    LENSTRA, A.K., LENSTRA, Jr., H.W., MANASSE, M.S. & POLLARD, J.M. The number theory sieve. Preprint, 1990.Google Scholar

Copyright information

© Paulo Ribenboim 1991

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations