Skip to main content

Elastic-Plastic Response of Solids Under Shock-Wave Loading

  • Chapter

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Because shock-wave and high-strain-rate phenomena are involved in a broad range of technological applications, we are interested in understanding time-dependent mechanical properties of materials subjected to these extreme loading conditions. The shock-wave technique also provides a powerful tool for scientific investigation of material properties at extremely high strain rates. With modern diagnostics, elastic-plastic yielding can be studied by recording and analyzing shock-wave structures. Investigations of the resistance of materials to shock-wave deformation are based on the analysis of elastic precursors in compression and rarefaction waves, of plastic shock-front rise times, on measurements of principal stresses in shock-compressed matter, and on other more sophisticated measurements and analyses. Empirical data are generalized by constitutive relationships that are used, for example, for computer simulations of impact phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, T.X., and G.E. Duvall (1966). “Stress relaxation behind elastic shock wave in rocks,” J. Geophys. Res. 71(18), pp. 4349–4360.

    Article  ADS  Google Scholar 

  • Al’tshuler, L.V., M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov (1999). “On shear strength of aluminum in shock waves,” Comb., Expl. Shock Waves 35(1), pp. 92–96. [trans. from Fiz. Goreniya Vzryva 35(1), pp. 102–107(1999).]

    Article  Google Scholar 

  • Al’tshuler, L.V., S.B. Kormer, M.I. Brazhnik, L.A. Vladimirov, M.P. Speranskaya, and A.I. Funtikov (1960). “Isentropic compressibility of aluminum, copper, lead, and iron at high pressures,” Sov. Phys.-JETP 11, pp. 766–775 (1960). [trans. from Zh. Eksp. Teor. Fiz. 38(4), pp. 1061–1072 (1960).]

    Google Scholar 

  • Arnold, W. (1992). “Influence of twinning on the elasto-plastic behavior of Armco iron,” in: Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, XW. Forbes, and D.G. Tasker), Elsevier, Amsterdam, pp. 539–542.

    Google Scholar 

  • Arvidson, T., and L. Eriksson (1973). “Fragmentation, structure and mechanical properties of some steels and pure aluminum after shock loading,” in: Metallurgical Effects at High Strain Rates (eds. R.W. Rohde, B.M. Butcher, X.R. Holland, and C.H. Karnes) Plenum Press, New York, pp. 605–613.

    Chapter  Google Scholar 

  • Asay, X.R., and L.C. Chhabildas (1981). “Determination of the shear strength of shock-compressed 6061-T6 aluminum,” in Shock Waves and High-Strain-Rate Phenomena in Metals (eds. M.A. Meyers and L.E. Murr) Plenum, New York, pp. 417–431.

    Chapter  Google Scholar 

  • Asay, X.R., G.R. Fowles, and Y. Gupta (1972). “Determination of material relaxation properties from measurements on decaying elastic shock fronts,” J. Appl. Phys. 43(2), pp. 744–746.

    Article  ADS  Google Scholar 

  • Asay, X.R., and X. Lipkin (1978). “A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material,” J. Appl. Phys. 49(7), pp. 4242–4247.

    Article  ADS  Google Scholar 

  • Bakhrakh, S.M., V.N. Knyazev, P.N. Nizovtzev, V.A. Raevsky, and E.V. Shuvalova (2001). “Computational and theoretical analysis of the method of main stresses,” Problems of Atomic Science and Technology. Series: Theoretical and Applied Physics, pp. 13–17. (in Russian)

    Google Scholar 

  • Barker, L.M. (1971). “A Model for Stress Wave Propagation in Composite Materials,” J. Composite Materials, 5, p. 140.

    Article  ADS  Google Scholar 

  • Dremin, A.N., and G.I. Kanel (1970). “Refraction of oblique shock wave at interface with less rigid media,” J. Appl. Mech. Tech. Phys. 11(3), pp. 488–492 (1970) [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 11(3), pp. 140–144 (1970)].

    Article  ADS  Google Scholar 

  • Dremin, A.N., and G.I. Kanel (1976). “Compression and rarefaction waves in shock-compressed metals,” J. Appl. Mech. Tech. Phys. 17(2), pp. 263–267 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 17(2), pp. 146–153 (1976)].

    Article  ADS  Google Scholar 

  • Dremin, A.N., G.I. Kanel, and O.B. Chernikova (1981). “The resistance to plastic deformation of aluminum AD1 and duralumin D16 to plastic deformation,” J. Appl. Mech. Tech. Phys. 22(4), pp. 558–562 [trans. from Zk Prikl. Mekh. Tekh. Fiz. 22(4), pp. 132–138 (1981)].

    Article  ADS  Google Scholar 

  • Dunn, J.E., and D.E. Grady (1986). “Strain rate dependence in steady plastic shock waves,” in Shock Waves in Condensed Matter (ed. Y.M. Gupta) Plenum Press, New York, pp. 359–364.

    Chapter  Google Scholar 

  • Feng, R., Y.M. Gupta, and M.K.W. Wong (1997). “Dynamic analysis of the response of lateral piezoresistance gauges in shocked ceramics,” J. Appl. Phys. 82(6), pp. 2845–2854.

    Article  ADS  Google Scholar 

  • Fowles, R., and R.F. Williams (1970). “Plane stress wave propagation in solids,” J. Appl. Phys. 41(1), pp. 360–363.

    Article  ADS  Google Scholar 

  • Furnish, M.D., L.C. Chhabildas, D.J. Steinberg, and G.T. Gray III (1992). “Dynamic behavior of fully dense molybdenum,” in Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G Tasker), North-Holland, Amsterdam, pp. 419–422.

    Google Scholar 

  • Gilman, J.J. (1968). “Dislocation dynamics and response of materials to impact,” Appl. Mech. Rev. 21(8), pp. 767–783.

    ADS  Google Scholar 

  • Gilman, J.J. (1969). Micromechanics of Flow in Solids. McGraw-Hill, New York.

    Google Scholar 

  • Gluzman, V.D., G.I. Kanel, V.F. Loskutov, V.E. Fortov, and I.E. Khorev (1985). “Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading,” Strength of Materials 17(8), pp. 1093–1098 [trans. from Problemy Prochnosti 17(8), pp. 52–57 (1985)].

    Article  Google Scholar 

  • Gokhfeld, D.A., and O.S. Sadakov (1984). Plasticity of Structural Elements Under Repeated Loads, Mashinostroenie, Moscow, (in Russian)

    Google Scholar 

  • Graham, R.A. (1993). Solids Under High-Pressure Shock Compression, Springer-Verlag, New York.

    Book  Google Scholar 

  • Guinan, M.W., and D.J. Steinberg (1974). “Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements,” J. Phys. Chem. Solids 35, pp. 1501–1512.

    Article  ADS  Google Scholar 

  • Gupta, Y.M., G.E. Duvall, and G.R. Fowles (1975). “Dislocation mechanisms for stress relaxation in shocked LiF,” J. Appl. Phys. 46(2), pp. 532–546.

    Article  ADS  Google Scholar 

  • Holian, B.L. (1995). “Atomistic computer simulations of shock waves,” Shock Waves 5, pp. 149–157.

    Article  ADS  Google Scholar 

  • Johnson, J.N. (1969). “Constitutive relation for rate-dependent plastic flow in polycrystalline metals,” J. Appl. Phys. 40(5), pp. 2287–2293.

    Article  ADS  Google Scholar 

  • Johnson, J.N., and L.M. Barker (1969). “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,” J. Appl. Phys. 40(11), pp. 4321–4334.

    Article  ADS  Google Scholar 

  • Kalymykov, Yu.B., G.I. Kanel, I.P. Parkhomenko, A.V. Utkin, and V.E. Fortov (1990). “Behavior of rubber in shock waves and rarefaction waves,” J. Appl. Mech. Tech. Phys. 31(1), pp. 116–120 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 31(1), pp. 126–130(1990)].

    Article  ADS  Google Scholar 

  • Kanel, G.I. (1982). “Model of the kinetics of metal plastic deformation under shock-wave loading conditions,” J. Appl. Mech. Tech. Phys. 23(2), pp. 256–260 [trans. from Zk Prikl. Mekh Tekh. Fiz. 23(2), pp. 105–110 (1982)].

    Article  ADS  Google Scholar 

  • Kanel, G.I. (1988). “Calculation of strains and failure of steel in shock waves,” Problemy Prochnosti 20(9), pp. 55–58 (in Russian)

    Google Scholar 

  • Kanel, G.I., M.F. Ivanov, and A.N. Parshikov (1995). “Computer Simulation of the Heterogeneous Materials Response to the Impact Loading,” Int. J. Impact Engineering, 17(1–6), pp. 455–464.

    Article  Google Scholar 

  • Kanel, G.I., A.M. Molodets, and A.N. Dremin (1977). “Investigation of singularities of glass strain under compression waves,” Comb. Expl. Shock Waves 13(6), pp. 772–779 [trans. from Fiz. Goreniya Vzryva 13(6), pp. 906–912 (1977)].

    Article  Google Scholar 

  • Kanel, G.I., A.M. Molodets, and A.N. Dremin (1979). “Variation in the strength of metals under the influence of shock waves,” Phys. Met. Metall. 46(1), pp. 175–177 [trans. from Fiz.Metall. Metalloved. 46(1), pp. 200–202 (1978)].

    Google Scholar 

  • Kanel, G.I., and E.N. Petrova (1981) “The strength of titanium VT6 under conditions of shock-wave loading,” in Detonation, Inst. Chem. Phys., Chemogolovka, pp. 136–141. (in Russian)

    Google Scholar 

  • Kanel, G.I., S.V. Razorenov, and V.E. Fortov (1988). “Viscoelasticity of aluminum in rarefaction waves,” J. Appl. Mech. Tech. Phys. 29(6), pp. 824–826 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 29(6), pp. 67–70].

    Article  ADS  Google Scholar 

  • Kanel, G.I., S.V. Razorenov, A.V. Utkin, and V.E. Fortov (1996). Shock-Wave Phenomena in Condensed media, Janus-K, Moscow, (in Russian)

    Google Scholar 

  • Kanel, G.I., and V.V. Scherban (1980). “Plastic deformation and cleavage rupture of Armco iron in a shock wave,” Comb. Expl. Shock Waves 16(4), pp. 439–446 (1980) [trans. from Fiz. Goreniya Vzryva 16(4), pp. 93–103].

    Article  Google Scholar 

  • Kanel, G.I., A. V. Utkin, and Z.G. Tolstikova (1994). “Response of the High-Filled Elastomers to Shock-Wave Loading,” High-Pressure Science and Technology1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1123–1126.

    Google Scholar 

  • Kesler, G., H.U. Karow, K. Baumung, V.E. Fortov, G.I. Kanel, and V. Licht (1994). “High-Power Light Ion Beams and Intense Shock Waves,” High-Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1887–1890.

    Google Scholar 

  • Kormer, S.B. (1968). “Optical investigations of properties of shock-compressed condensed dielectrics,” Sov. Phys.-Usp. 11(4), pp. 229–254. [trans. from Usp. Fiz. Nauk 94(4), pp. 641–687 (1968).]

    Article  ADS  Google Scholar 

  • Krasovsky, A.Ya. (1980). Brittleness of Metals at Low Temperatures, Naukova Dumka, Kiev, (in Russian)

    Google Scholar 

  • Kusubov, A.S., and M. van Thiel (1969). “Dynamic yield strength of 2024-T4 aluminum at 313 kbar,” J. Appl. Phys. 40(2), pp. 893–899.

    Article  ADS  Google Scholar 

  • Landau L.D., and E.M. Lifshitz (1959). Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Mashimo, T., Y. Hanaoka, and K. Nagayama (1988). “Elastoplastic properties under shock compression of Al2O3 single crystal and polycrystal,” J. Appl. Phys. 63(2), pp. 327–336.

    Article  ADS  Google Scholar 

  • McClintock, F.A., and A.S. Argon (1966). Mechanical Behavior of Materials, Addison-Wesley, Reading, MA.

    Google Scholar 

  • McQueen, R.G., J.N. Fritz, and C.E. Morris (1984). “The velocity of sound behind strong shock waves in 2024 Al,” in Shock Compression of Condensed Matter1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, pp. 95–98.

    Google Scholar 

  • Mogilevsky, M.A. (1983). “Mechanisms of deformation under shock loading,” Physics Reports (Review Section of Rhys. Letters) 97(6), pp. 357–393.

    ADS  Google Scholar 

  • Mogilevsky, M.A., S.A. Bordzilovsky, and N.N. Gorshkov (1978). “Effect of the width of the front with quasiisentropic compression on the hardening of some metals,” Comb. Expl. Shock Waves 14(6), pp. 794–798 [trans. from Fiz. Goreniya Vzryva 14(6), pp. 110–116(1978)].

    Article  Google Scholar 

  • Mogilevsky, M.A., and I.O. Mynkin (1978). “Effect of the point defects on one-dimensional compression of a lattice,” Comb. Expl. Shock Waves 14(5), pp. 680–682. [trans. from Fiz. Goreniya Vzryva 14(5), pp. 159–163 (1978).]

    Article  Google Scholar 

  • Morris, C.E. (ed.) (1982). Los Alamos Shock Wave Profile Data, University of California Press, Berkeley, CA.

    Google Scholar 

  • Murr, L.E., E. Moin, K. Wongwiwat, and K.P. Standhammer (1978). “Effect of peak pressure and pressure-pulse duration on crystallographic transformations in shock-loaded metals and alloys,” Scripta Met. 12(5), pp. 425–431.

    Article  Google Scholar 

  • Razorenov, S.V., A.A. Bogach, and G.I. Kanel (1997). “Influence of heat treatment and polymorphous transformations on the dynamic rupture resistance of 40X steel,” Phys Met. Metall. 83(1), pp. 100–103 [trans. from Fiz. Metall. Metalloved. 83(1), pp. 147–152(1997)].

    Google Scholar 

  • Razorenov, S.V., A.A. Bogach, G.I. Kanel, A.V. Utkin, V.E. Fortov, and D.E. Grady (1998). “Elastic-Plastic Deformation and Spall Fracture of Metals at High Temperatures,” in Shock Compression of Condensed Matter1997 (eds. S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 447–480.

    Google Scholar 

  • Razorenov, S.V., G.I. Kanel, and V.E. Fortov (1985). “Measurement of the width of shock fronts in copper,” Sov. Phys.-Tech. Phys. 30(9), pp. 1061–1062 [trans. from Zh. Tekh.Fiz. 55(9), pp. 1816–1818].

    Google Scholar 

  • Razorenov, S.V., G.I. Kanel, O.R. Osipova, and V.E. Fortov (1987). “Measurement of the viscosity of copper in shock loading,” High Temp. 25(1), pp. 57–61 [trans. from Teplofiz. Vys. Temp. 25(1), pp. 65–69 (1987)].

    Google Scholar 

  • Razorenov, S.V., G.I. Kanel, A.V. Utkin, A.A. Bogach, M. Burkins, and W.A. Gooch (2000). “Dynamic strength and edge effects at spall fracture for titanium alloys of varying oxygen content,” in: Shock Compression of Condensed Matter1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 415–418.

    Google Scholar 

  • Smith, C.S. (1958). “Metallographic studies of metals after explosive loading,” Trans. AIME 214, pp. 574–586.

    Google Scholar 

  • Swegle, J.W., and D.E. Grady (1985). “Shock viscosity and the prediction of shock wave rise times,” J. Appl. Phys. 58, pp. 692–701.

    Article  ADS  Google Scholar 

  • Taylor, J.W. (1965). “Dislocation dynamics and dynamic yielding,” J. Appl, Phys. 36(10), pp. 3146–3150.

    Article  ADS  Google Scholar 

  • Taylor, J.W., and M.H. Rice (1963). “Elastic-plastic properties of iron,” J. Appl. Phys. 34, pp. 364–371.

    Article  ADS  Google Scholar 

  • Vorob’ev, A.A., A.N. Dremin, and G.I. Kanel (1974). “Dependence of the coefficients of elasticity of Al on the degree of compression in the shock wave,” J. Appl. Mech. Tech. Phys. 15(5), pp. 661–665. [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 15(5), pp. 94–100(1974).]

    Article  ADS  Google Scholar 

  • Weaver, C.W., and M.S. Paterson (1969). “Stress-strain properties of rubber at pressures above the glass transition pressure,” J. Polym. Sci., 7 pt A-2, № 3, pp. 587–592.

    Article  Google Scholar 

  • Zaretsky, E.B. (1992). “X-Ray diffraction evidence for the role of stacking faults in plastic deformation of solids under shock loading,” Shock Waves 2, pp. 113–116.

    Article  ADS  Google Scholar 

  • Zaretsky, E.B., P.A. Mogilevsky, G.I. Kanel, and V.E. Fortov (1991). “Device for investigating X-ray diffraction studies on shock-compressed materials,” High Temp. 29(5), pp. 805–811 [trans. from Teplofiz. Vys. Temp. 29(5), pp. 1002–1008 (1991)].

    Google Scholar 

  • Zel’dovich, Ya.B. and Yu.P. Raizer (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York. Reissued in 2002 by Dover Publications, Mineola, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanel, G.I., Fortov, V.E., Razorenov, S.V. (2004). Elastic-Plastic Response of Solids Under Shock-Wave Loading. In: Shock-Wave Phenomena and the Properties of Condensed Matter. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4282-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4282-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1916-8

  • Online ISBN: 978-1-4757-4282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics