# Elastic-Plastic Response of Solids Under Shock-Wave Loading

## Abstract

Because shock-wave and high-strain-rate phenomena are involved in a broad range of technological applications, we are interested in understanding time-dependent mechanical properties of materials subjected to these extreme loading conditions. The shock-wave technique also provides a powerful tool for scientific investigation of material properties at extremely high strain rates. With modern diagnostics, elastic-plastic yielding can be studied by recording and analyzing shock-wave structures. Investigations of the resistance of materials to shock-wave deformation are based on the analysis of elastic precursors in compression and rarefaction waves, of plastic shock-front rise times, on measurements of principal stresses in shock-compressed matter, and on other more sophisticated measurements and analyses. Empirical data are generalized by constitutive relationships that are used, for example, for computer simulations of impact phenomena.

## Keywords

Rarefaction Wave Shock Compression Armco Iron Free Surface Velocity Plastic Wave## Preview

Unable to display preview. Download preview PDF.

## References

- Ahrens, T.X., and G.E. Duvall (1966). “Stress relaxation behind elastic shock wave in rocks,”
*J. Geophys. Res.***71(18)**, pp. 4349–4360.ADSCrossRefGoogle Scholar - Al’tshuler, L.V., M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov (1999). “On shear strength of aluminum in shock waves,”
*Comb., Expl. Shock Waves***35(1)**, pp. 92–96. [trans. from*Fiz. Goreniya Vzryva***35(1)**, pp. 102–107(1999).]CrossRefGoogle Scholar - Al’tshuler, L.V., S.B. Kormer, M.I. Brazhnik, L.A. Vladimirov, M.P. Speranskaya, and A.I. Funtikov (1960). “Isentropic compressibility of aluminum, copper, lead, and iron at high pressures,”
*Sov. Phys.-JETP***11**, pp. 766–775 (1960). [trans. from*Zh. Eksp. Teor. Fiz.***38(4)**, pp. 1061–1072 (1960).]Google Scholar - Arnold, W. (1992). “Influence of twinning on the elasto-plastic behavior of Armco iron,” in:
*Shock Compression of Condensed Matter—1991*(eds. S.C. Schmidt, R.D. Dick, XW. Forbes, and D.G. Tasker), Elsevier, Amsterdam, pp. 539–542.Google Scholar - Arvidson, T., and L. Eriksson (1973). “Fragmentation, structure and mechanical properties of some steels and pure aluminum after shock loading,” in:
*Metallurgical Effects at High Strain Rates*(eds. R.W. Rohde, B.M. Butcher, X.R. Holland, and C.H. Karnes) Plenum Press, New York, pp. 605–613.CrossRefGoogle Scholar - Asay, X.R., and L.C. Chhabildas (1981). “Determination of the shear strength of shock-compressed 6061-T6 aluminum,” in
*Shock Waves and High-Strain-Rate Phenomena in Metals*(eds. M.A. Meyers and L.E. Murr) Plenum, New York, pp. 417–431.CrossRefGoogle Scholar - Asay, X.R., G.R. Fowles, and Y. Gupta (1972). “Determination of material relaxation properties from measurements on decaying elastic shock fronts,”
*J. Appl. Phys.***43(2)**, pp. 744–746.ADSCrossRefGoogle Scholar - Asay, X.R., and X. Lipkin (1978). “A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material,”
*J. Appl. Phys.*49(7), pp. 4242–4247.ADSCrossRefGoogle Scholar - Bakhrakh, S.M., V.N. Knyazev, P.N. Nizovtzev, V.A. Raevsky, and E.V. Shuvalova (2001). “Computational and theoretical analysis of the method of main stresses,”
*Problems of Atomic Science and Technology. Series: Theoretical and Applied Physics*, pp. 13–17. (in Russian)Google Scholar - Barker, L.M. (1971). “A Model for Stress Wave Propagation in Composite Materials,”
*J. Composite Materials*,**5**, p. 140.ADSCrossRefGoogle Scholar - Dremin, A.N., and G.I. Kanel (1970). “Refraction of oblique shock wave at interface with less rigid media,”
*J. Appl. Mech. Tech. Phys.***11(3)**, pp. 488–492 (1970) [trans. from*Zh. Prikl. Mekh. Tekh. Fiz.***11(3)**, pp. 140–144 (1970)].ADSCrossRefGoogle Scholar - Dremin, A.N., and G.I. Kanel (1976). “Compression and rarefaction waves in shock-compressed metals,”
*J. Appl. Mech. Tech. Phys.***17(2)**, pp. 263–267 [trans. from*Zh. Prikl. Mekh. Tekh. Fiz.***17(2)**, pp. 146–153 (1976)].ADSCrossRefGoogle Scholar - Dremin, A.N., G.I. Kanel, and O.B. Chernikova (1981). “The resistance to plastic deformation of aluminum AD1 and duralumin D16 to plastic deformation,”
*J. Appl. Mech. Tech. Phys.***22(4)**, pp. 558–562 [trans. from*Zk Prikl. Mekh. Tekh. Fiz.***22(4)**, pp. 132–138 (1981)].ADSCrossRefGoogle Scholar - Dunn, J.E., and D.E. Grady (1986). “Strain rate dependence in steady plastic shock waves,” in
*Shock Waves in Condensed Matter*(ed. Y.M. Gupta) Plenum Press, New York, pp. 359–364.CrossRefGoogle Scholar - Feng, R., Y.M. Gupta, and M.K.W. Wong (1997). “Dynamic analysis of the response of lateral piezoresistance gauges in shocked ceramics,”
*J. Appl. Phys.***82(6)**, pp. 2845–2854.ADSCrossRefGoogle Scholar - Fowles, R., and R.F. Williams (1970). “Plane stress wave propagation in solids,”
*J. Appl. Phys.***41(1)**, pp. 360–363.ADSCrossRefGoogle Scholar - Furnish, M.D., L.C. Chhabildas, D.J. Steinberg, and G.T. Gray III (1992). “Dynamic behavior of fully dense molybdenum,” in
*Shock Compression of Condensed Matter—1991*(eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G Tasker), North-Holland, Amsterdam, pp. 419–422.Google Scholar - Gilman, J.J. (1968). “Dislocation dynamics and response of materials to impact,”
*Appl. Mech. Rev.***21(8)**, pp. 767–783.ADSGoogle Scholar - Gilman, J.J. (1969).
*Micromechanics of Flow in Solids.*McGraw-Hill, New York.Google Scholar - Gluzman, V.D., G.I. Kanel, V.F. Loskutov, V.E. Fortov, and I.E. Khorev (1985). “Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading,”
*Strength of Materials***17(8)**, pp. 1093–1098 [trans. from*Problemy Prochnosti***17(8)**, pp. 52–57 (1985)].CrossRefGoogle Scholar - Gokhfeld, D.A., and O.S. Sadakov (1984).
*Plasticity of Structural Elements Under Repeated Loads*, Mashinostroenie, Moscow, (in Russian)Google Scholar - Graham, R.A. (1993).
*Solids Under High-Pressure Shock Compression*, Springer-Verlag, New York.CrossRefGoogle Scholar - Guinan, M.W., and D.J. Steinberg (1974). “Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements,”
*J. Phys. Chem. Solids***35**, pp. 1501–1512.ADSCrossRefGoogle Scholar - Gupta, Y.M., G.E. Duvall, and G.R. Fowles (1975). “Dislocation mechanisms for stress relaxation in shocked LiF,”
*J. Appl. Phys.***46(2)**, pp. 532–546.ADSCrossRefGoogle Scholar - Holian, B.L. (1995). “Atomistic computer simulations of shock waves,”
*Shock Waves***5**, pp. 149–157.ADSCrossRefGoogle Scholar - Johnson, J.N. (1969). “Constitutive relation for rate-dependent plastic flow in polycrystalline metals,”
*J. Appl. Phys.***40(5)**, pp. 2287–2293.ADSCrossRefGoogle Scholar - Johnson, J.N., and L.M. Barker (1969). “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,”
*J. Appl. Phys.***40(11)**, pp. 4321–4334.ADSCrossRefGoogle Scholar - Kalymykov, Yu.B., G.I. Kanel, I.P. Parkhomenko, A.V. Utkin, and V.E. Fortov (1990). “Behavior of rubber in shock waves and rarefaction waves,”
*J. Appl. Mech. Tech. Phys.***31(1)**, pp. 116–120 [trans. from*Zh. Prikl. Mekh. Tekh. Fiz.***31(1)**, pp. 126–130(1990)].ADSCrossRefGoogle Scholar - Kanel, G.I. (1982). “Model of the kinetics of metal plastic deformation under shock-wave loading conditions,”
*J. Appl. Mech. Tech. Phys.***23(2)**, pp. 256–260 [trans. from*Zk Prikl. Mekh Tekh. Fiz.***23(2)**, pp. 105–110 (1982)].ADSCrossRefGoogle Scholar - Kanel, G.I. (1988). “Calculation of strains and failure of steel in shock waves,”
*Problemy Prochnosti***20(9)**, pp. 55–58 (in Russian)Google Scholar - Kanel, G.I., M.F. Ivanov, and A.N. Parshikov (1995). “Computer Simulation of the Heterogeneous Materials Response to the Impact Loading,”
*Int. J. Impact Engineering*,**17(1–6)**, pp. 455–464.CrossRefGoogle Scholar - Kanel, G.I., A.M. Molodets, and A.N. Dremin (1977). “Investigation of singularities of glass strain under compression waves,”
*Comb. Expl. Shock Waves***13(6)**, pp. 772–779 [trans. from*Fiz. Goreniya Vzryva***13(6)**, pp. 906–912 (1977)].CrossRefGoogle Scholar - Kanel, G.I., A.M. Molodets, and A.N. Dremin (1979). “Variation in the strength of metals under the influence of shock waves,”
*Phys. Met. Metall.***46(1)**, pp. 175–177 [trans. from*Fiz.Metall. Metalloved.***46(1)**, pp. 200–202 (1978)].Google Scholar - Kanel, G.I., and E.N. Petrova (1981) “The strength of titanium VT6 under conditions of shock-wave loading,” in
*Detonation*, Inst. Chem. Phys., Chemogolovka, pp. 136–141. (in Russian)Google Scholar - Kanel, G.I., S.V. Razorenov, and V.E. Fortov (1988). “Viscoelasticity of aluminum in rarefaction waves,”
*J. Appl. Mech. Tech. Phys.***29(6)**, pp. 824–826 [trans. from*Zh. Prikl. Mekh. Tekh. Fiz.***29(6)**, pp. 67–70].ADSCrossRefGoogle Scholar - Kanel, G.I., S.V. Razorenov, A.V. Utkin, and V.E. Fortov (1996).
*Shock-Wave Phenomena in Condensed media*, Janus-K, Moscow, (in Russian)Google Scholar - Kanel, G.I., and V.V. Scherban (1980). “Plastic deformation and cleavage rupture of Armco iron in a shock wave,”
*Comb. Expl. Shock Waves***16(4)**, pp. 439–446 (1980) [trans. from*Fiz. Goreniya Vzryva***16(4)**, pp. 93–103].CrossRefGoogle Scholar - Kanel, G.I., A. V. Utkin, and Z.G. Tolstikova (1994). “Response of the High-Filled Elastomers to Shock-Wave Loading,”
*High-Pressure Science and Technology*—*1993*(eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1123–1126.Google Scholar - Kesler, G., H.U. Karow, K. Baumung, V.E. Fortov, G.I. Kanel, and V. Licht (1994). “High-Power Light Ion Beams and Intense Shock Waves,”
*High-Pressure Science and Technology—1993*(eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1887–1890.Google Scholar - Kormer, S.B. (1968). “Optical investigations of properties of shock-compressed condensed dielectrics,”
*Sov. Phys.-Usp.***11(4)**, pp. 229–254. [trans. from*Usp. Fiz. Nauk***94(4)**, pp. 641–687 (1968).]ADSCrossRefGoogle Scholar - Krasovsky, A.Ya. (1980).
*Brittleness of Metals at Low Temperatures*, Naukova Dumka, Kiev, (in Russian)Google Scholar - Kusubov, A.S., and M. van Thiel (1969). “Dynamic yield strength of 2024-T4 aluminum at 313 kbar,”
*J. Appl. Phys.***40(2)**, pp. 893–899.ADSCrossRefGoogle Scholar - Landau L.D., and E.M. Lifshitz (1959).
*Fluid Mechanics*, Pergamon Press, Oxford.Google Scholar - Mashimo, T., Y. Hanaoka, and K. Nagayama (1988). “Elastoplastic properties under shock compression of Al
_{2}O_{3}single crystal and polycrystal,”*J. Appl. Phys.***63(2)**, pp. 327–336.ADSCrossRefGoogle Scholar - McClintock, F.A., and A.S. Argon (1966).
*Mechanical Behavior of Materials*, Addison-Wesley, Reading, MA.Google Scholar - McQueen, R.G., J.N. Fritz, and C.E. Morris (1984). “The velocity of sound behind strong shock waves in 2024 Al,” in
*Shock Compression of Condensed Matter*—*1983*(eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, pp. 95–98.Google Scholar - Mogilevsky, M.A. (1983). “Mechanisms of deformation under shock loading,”
*Physics Reports (Review Section of Rhys. Letters)***97(6)**, pp. 357–393.ADSGoogle Scholar - Mogilevsky, M.A., S.A. Bordzilovsky, and N.N. Gorshkov (1978). “Effect of the width of the front with quasiisentropic compression on the hardening of some metals,”
*Comb. Expl. Shock Waves***14(6)**, pp. 794–798 [trans. from*Fiz. Goreniya Vzryva***14(6)**, pp. 110–116(1978)].CrossRefGoogle Scholar - Mogilevsky, M.A., and I.O. Mynkin (1978). “Effect of the point defects on one-dimensional compression of a lattice,”
*Comb. Expl. Shock Waves***14(5)**, pp. 680–682. [trans. from*Fiz. Goreniya Vzryva***14(5)**, pp. 159–163 (1978).]CrossRefGoogle Scholar - Morris, C.E. (ed.) (1982).
*Los Alamos Shock Wave Profile Data*, University of California Press, Berkeley, CA.Google Scholar - Murr, L.E., E. Moin, K. Wongwiwat, and K.P. Standhammer (1978). “Effect of peak pressure and pressure-pulse duration on crystallographic transformations in shock-loaded metals and alloys,”
*Scripta Met.***12(5)**, pp. 425–431.CrossRefGoogle Scholar - Razorenov, S.V., A.A. Bogach, and G.I. Kanel (1997). “Influence of heat treatment and polymorphous transformations on the dynamic rupture resistance of 40X steel,”
*Phys Met. Metall.***83(1)**, pp. 100–103 [trans. from*Fiz. Metall. Metalloved.***83(1)**, pp. 147–152(1997)].Google Scholar - Razorenov, S.V., A.A. Bogach, G.I. Kanel, A.V. Utkin, V.E. Fortov, and D.E. Grady (1998). “Elastic-Plastic Deformation and Spall Fracture of Metals at High Temperatures,” in
*Shock Compression of Condensed Matter*—*1997*(eds. S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 447–480.Google Scholar - Razorenov, S.V., G.I. Kanel, and V.E. Fortov (1985). “Measurement of the width of shock fronts in copper,”
*Sov. Phys.-Tech. Phys.***30(9)**, pp. 1061–1062 [trans. from*Zh. Tekh.Fiz.***55(9)**, pp. 1816–1818].Google Scholar - Razorenov, S.V., G.I. Kanel, O.R. Osipova, and V.E. Fortov (1987). “Measurement of the viscosity of copper in shock loading,”
*High Temp.***25(1)**, pp. 57–61 [trans. from*Teplofiz. Vys. Temp.***25(1)**, pp. 65–69 (1987)].Google Scholar - Razorenov, S.V., G.I. Kanel, A.V. Utkin, A.A. Bogach, M. Burkins, and W.A. Gooch (2000). “Dynamic strength and edge effects at spall fracture for titanium alloys of varying oxygen content,” in:
*Shock Compression of Condensed Matter*—*1999*(eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 415–418.Google Scholar - Smith, C.S. (1958). “Metallographic studies of metals after explosive loading,”
*Trans. AIME***214**, pp. 574–586.Google Scholar - Swegle, J.W., and D.E. Grady (1985). “Shock viscosity and the prediction of shock wave rise times,”
*J. Appl. Phys.***58**, pp. 692–701.ADSCrossRefGoogle Scholar - Taylor, J.W. (1965). “Dislocation dynamics and dynamic yielding,”
*J. Appl, Phys.***36(10)**, pp. 3146–3150.ADSCrossRefGoogle Scholar - Taylor, J.W., and M.H. Rice (1963). “Elastic-plastic properties of iron,”
*J. Appl. Phys.***34**, pp. 364–371.ADSCrossRefGoogle Scholar - Vorob’ev, A.A., A.N. Dremin, and G.I. Kanel (1974). “Dependence of the coefficients of elasticity of Al on the degree of compression in the shock wave,”
*J. Appl. Mech. Tech. Phys.***15(5)**, pp. 661–665. [trans. from*Zh. Prikl. Mekh. Tekh. Fiz.***15(5)**, pp. 94–100(1974).]ADSCrossRefGoogle Scholar - Weaver, C.W., and M.S. Paterson (1969). “Stress-strain properties of rubber at pressures above the glass transition pressure,”
*J. Polym. Sci.*, 7 pt A-2, № 3, pp. 587–592.CrossRefGoogle Scholar - Zaretsky, E.B. (1992). “X-Ray diffraction evidence for the role of stacking faults in plastic deformation of solids under shock loading,”
*Shock Waves***2**, pp. 113–116.ADSCrossRefGoogle Scholar - Zaretsky, E.B., P.A. Mogilevsky, G.I. Kanel, and V.E. Fortov (1991). “Device for investigating X-ray diffraction studies on shock-compressed materials,”
*High Temp.***29(5)**, pp. 805–811 [trans. from*Teplofiz. Vys. Temp.***29(5)**, pp. 1002–1008 (1991)].Google Scholar - Zel’dovich, Ya.B. and Yu.P. Raizer (1967).
*Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena*, Academic Press, New York. Reissued in 2002 by Dover Publications, Mineola, NY.Google Scholar