Advertisement

Elastic-Plastic Response of Solids Under Shock-Wave Loading

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Chapter
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Because shock-wave and high-strain-rate phenomena are involved in a broad range of technological applications, we are interested in understanding time-dependent mechanical properties of materials subjected to these extreme loading conditions. The shock-wave technique also provides a powerful tool for scientific investigation of material properties at extremely high strain rates. With modern diagnostics, elastic-plastic yielding can be studied by recording and analyzing shock-wave structures. Investigations of the resistance of materials to shock-wave deformation are based on the analysis of elastic precursors in compression and rarefaction waves, of plastic shock-front rise times, on measurements of principal stresses in shock-compressed matter, and on other more sophisticated measurements and analyses. Empirical data are generalized by constitutive relationships that are used, for example, for computer simulations of impact phenomena.

Keywords

Rarefaction Wave Shock Compression Armco Iron Free Surface Velocity Plastic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, T.X., and G.E. Duvall (1966). “Stress relaxation behind elastic shock wave in rocks,” J. Geophys. Res. 71(18), pp. 4349–4360.ADSCrossRefGoogle Scholar
  2. Al’tshuler, L.V., M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov (1999). “On shear strength of aluminum in shock waves,” Comb., Expl. Shock Waves 35(1), pp. 92–96. [trans. from Fiz. Goreniya Vzryva 35(1), pp. 102–107(1999).]CrossRefGoogle Scholar
  3. Al’tshuler, L.V., S.B. Kormer, M.I. Brazhnik, L.A. Vladimirov, M.P. Speranskaya, and A.I. Funtikov (1960). “Isentropic compressibility of aluminum, copper, lead, and iron at high pressures,” Sov. Phys.-JETP 11, pp. 766–775 (1960). [trans. from Zh. Eksp. Teor. Fiz. 38(4), pp. 1061–1072 (1960).]Google Scholar
  4. Arnold, W. (1992). “Influence of twinning on the elasto-plastic behavior of Armco iron,” in: Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, XW. Forbes, and D.G. Tasker), Elsevier, Amsterdam, pp. 539–542.Google Scholar
  5. Arvidson, T., and L. Eriksson (1973). “Fragmentation, structure and mechanical properties of some steels and pure aluminum after shock loading,” in: Metallurgical Effects at High Strain Rates (eds. R.W. Rohde, B.M. Butcher, X.R. Holland, and C.H. Karnes) Plenum Press, New York, pp. 605–613.CrossRefGoogle Scholar
  6. Asay, X.R., and L.C. Chhabildas (1981). “Determination of the shear strength of shock-compressed 6061-T6 aluminum,” in Shock Waves and High-Strain-Rate Phenomena in Metals (eds. M.A. Meyers and L.E. Murr) Plenum, New York, pp. 417–431.CrossRefGoogle Scholar
  7. Asay, X.R., G.R. Fowles, and Y. Gupta (1972). “Determination of material relaxation properties from measurements on decaying elastic shock fronts,” J. Appl. Phys. 43(2), pp. 744–746.ADSCrossRefGoogle Scholar
  8. Asay, X.R., and X. Lipkin (1978). “A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material,” J. Appl. Phys. 49(7), pp. 4242–4247.ADSCrossRefGoogle Scholar
  9. Bakhrakh, S.M., V.N. Knyazev, P.N. Nizovtzev, V.A. Raevsky, and E.V. Shuvalova (2001). “Computational and theoretical analysis of the method of main stresses,” Problems of Atomic Science and Technology. Series: Theoretical and Applied Physics, pp. 13–17. (in Russian)Google Scholar
  10. Barker, L.M. (1971). “A Model for Stress Wave Propagation in Composite Materials,” J. Composite Materials, 5, p. 140.ADSCrossRefGoogle Scholar
  11. Dremin, A.N., and G.I. Kanel (1970). “Refraction of oblique shock wave at interface with less rigid media,” J. Appl. Mech. Tech. Phys. 11(3), pp. 488–492 (1970) [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 11(3), pp. 140–144 (1970)].ADSCrossRefGoogle Scholar
  12. Dremin, A.N., and G.I. Kanel (1976). “Compression and rarefaction waves in shock-compressed metals,” J. Appl. Mech. Tech. Phys. 17(2), pp. 263–267 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 17(2), pp. 146–153 (1976)].ADSCrossRefGoogle Scholar
  13. Dremin, A.N., G.I. Kanel, and O.B. Chernikova (1981). “The resistance to plastic deformation of aluminum AD1 and duralumin D16 to plastic deformation,” J. Appl. Mech. Tech. Phys. 22(4), pp. 558–562 [trans. from Zk Prikl. Mekh. Tekh. Fiz. 22(4), pp. 132–138 (1981)].ADSCrossRefGoogle Scholar
  14. Dunn, J.E., and D.E. Grady (1986). “Strain rate dependence in steady plastic shock waves,” in Shock Waves in Condensed Matter (ed. Y.M. Gupta) Plenum Press, New York, pp. 359–364.CrossRefGoogle Scholar
  15. Feng, R., Y.M. Gupta, and M.K.W. Wong (1997). “Dynamic analysis of the response of lateral piezoresistance gauges in shocked ceramics,” J. Appl. Phys. 82(6), pp. 2845–2854.ADSCrossRefGoogle Scholar
  16. Fowles, R., and R.F. Williams (1970). “Plane stress wave propagation in solids,” J. Appl. Phys. 41(1), pp. 360–363.ADSCrossRefGoogle Scholar
  17. Furnish, M.D., L.C. Chhabildas, D.J. Steinberg, and G.T. Gray III (1992). “Dynamic behavior of fully dense molybdenum,” in Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G Tasker), North-Holland, Amsterdam, pp. 419–422.Google Scholar
  18. Gilman, J.J. (1968). “Dislocation dynamics and response of materials to impact,” Appl. Mech. Rev. 21(8), pp. 767–783.ADSGoogle Scholar
  19. Gilman, J.J. (1969). Micromechanics of Flow in Solids. McGraw-Hill, New York.Google Scholar
  20. Gluzman, V.D., G.I. Kanel, V.F. Loskutov, V.E. Fortov, and I.E. Khorev (1985). “Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading,” Strength of Materials 17(8), pp. 1093–1098 [trans. from Problemy Prochnosti 17(8), pp. 52–57 (1985)].CrossRefGoogle Scholar
  21. Gokhfeld, D.A., and O.S. Sadakov (1984). Plasticity of Structural Elements Under Repeated Loads, Mashinostroenie, Moscow, (in Russian)Google Scholar
  22. Graham, R.A. (1993). Solids Under High-Pressure Shock Compression, Springer-Verlag, New York.CrossRefGoogle Scholar
  23. Guinan, M.W., and D.J. Steinberg (1974). “Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements,” J. Phys. Chem. Solids 35, pp. 1501–1512.ADSCrossRefGoogle Scholar
  24. Gupta, Y.M., G.E. Duvall, and G.R. Fowles (1975). “Dislocation mechanisms for stress relaxation in shocked LiF,” J. Appl. Phys. 46(2), pp. 532–546.ADSCrossRefGoogle Scholar
  25. Holian, B.L. (1995). “Atomistic computer simulations of shock waves,” Shock Waves 5, pp. 149–157.ADSCrossRefGoogle Scholar
  26. Johnson, J.N. (1969). “Constitutive relation for rate-dependent plastic flow in polycrystalline metals,” J. Appl. Phys. 40(5), pp. 2287–2293.ADSCrossRefGoogle Scholar
  27. Johnson, J.N., and L.M. Barker (1969). “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,” J. Appl. Phys. 40(11), pp. 4321–4334.ADSCrossRefGoogle Scholar
  28. Kalymykov, Yu.B., G.I. Kanel, I.P. Parkhomenko, A.V. Utkin, and V.E. Fortov (1990). “Behavior of rubber in shock waves and rarefaction waves,” J. Appl. Mech. Tech. Phys. 31(1), pp. 116–120 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 31(1), pp. 126–130(1990)].ADSCrossRefGoogle Scholar
  29. Kanel, G.I. (1982). “Model of the kinetics of metal plastic deformation under shock-wave loading conditions,” J. Appl. Mech. Tech. Phys. 23(2), pp. 256–260 [trans. from Zk Prikl. Mekh Tekh. Fiz. 23(2), pp. 105–110 (1982)].ADSCrossRefGoogle Scholar
  30. Kanel, G.I. (1988). “Calculation of strains and failure of steel in shock waves,” Problemy Prochnosti 20(9), pp. 55–58 (in Russian)Google Scholar
  31. Kanel, G.I., M.F. Ivanov, and A.N. Parshikov (1995). “Computer Simulation of the Heterogeneous Materials Response to the Impact Loading,” Int. J. Impact Engineering, 17(1–6), pp. 455–464.CrossRefGoogle Scholar
  32. Kanel, G.I., A.M. Molodets, and A.N. Dremin (1977). “Investigation of singularities of glass strain under compression waves,” Comb. Expl. Shock Waves 13(6), pp. 772–779 [trans. from Fiz. Goreniya Vzryva 13(6), pp. 906–912 (1977)].CrossRefGoogle Scholar
  33. Kanel, G.I., A.M. Molodets, and A.N. Dremin (1979). “Variation in the strength of metals under the influence of shock waves,” Phys. Met. Metall. 46(1), pp. 175–177 [trans. from Fiz.Metall. Metalloved. 46(1), pp. 200–202 (1978)].Google Scholar
  34. Kanel, G.I., and E.N. Petrova (1981) “The strength of titanium VT6 under conditions of shock-wave loading,” in Detonation, Inst. Chem. Phys., Chemogolovka, pp. 136–141. (in Russian)Google Scholar
  35. Kanel, G.I., S.V. Razorenov, and V.E. Fortov (1988). “Viscoelasticity of aluminum in rarefaction waves,” J. Appl. Mech. Tech. Phys. 29(6), pp. 824–826 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 29(6), pp. 67–70].ADSCrossRefGoogle Scholar
  36. Kanel, G.I., S.V. Razorenov, A.V. Utkin, and V.E. Fortov (1996). Shock-Wave Phenomena in Condensed media, Janus-K, Moscow, (in Russian)Google Scholar
  37. Kanel, G.I., and V.V. Scherban (1980). “Plastic deformation and cleavage rupture of Armco iron in a shock wave,” Comb. Expl. Shock Waves 16(4), pp. 439–446 (1980) [trans. from Fiz. Goreniya Vzryva 16(4), pp. 93–103].CrossRefGoogle Scholar
  38. Kanel, G.I., A. V. Utkin, and Z.G. Tolstikova (1994). “Response of the High-Filled Elastomers to Shock-Wave Loading,” High-Pressure Science and Technology1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1123–1126.Google Scholar
  39. Kesler, G., H.U. Karow, K. Baumung, V.E. Fortov, G.I. Kanel, and V. Licht (1994). “High-Power Light Ion Beams and Intense Shock Waves,” High-Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1887–1890.Google Scholar
  40. Kormer, S.B. (1968). “Optical investigations of properties of shock-compressed condensed dielectrics,” Sov. Phys.-Usp. 11(4), pp. 229–254. [trans. from Usp. Fiz. Nauk 94(4), pp. 641–687 (1968).]ADSCrossRefGoogle Scholar
  41. Krasovsky, A.Ya. (1980). Brittleness of Metals at Low Temperatures, Naukova Dumka, Kiev, (in Russian)Google Scholar
  42. Kusubov, A.S., and M. van Thiel (1969). “Dynamic yield strength of 2024-T4 aluminum at 313 kbar,” J. Appl. Phys. 40(2), pp. 893–899.ADSCrossRefGoogle Scholar
  43. Landau L.D., and E.M. Lifshitz (1959). Fluid Mechanics, Pergamon Press, Oxford.Google Scholar
  44. Mashimo, T., Y. Hanaoka, and K. Nagayama (1988). “Elastoplastic properties under shock compression of Al2O3 single crystal and polycrystal,” J. Appl. Phys. 63(2), pp. 327–336.ADSCrossRefGoogle Scholar
  45. McClintock, F.A., and A.S. Argon (1966). Mechanical Behavior of Materials, Addison-Wesley, Reading, MA.Google Scholar
  46. McQueen, R.G., J.N. Fritz, and C.E. Morris (1984). “The velocity of sound behind strong shock waves in 2024 Al,” in Shock Compression of Condensed Matter1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, pp. 95–98.Google Scholar
  47. Mogilevsky, M.A. (1983). “Mechanisms of deformation under shock loading,” Physics Reports (Review Section of Rhys. Letters) 97(6), pp. 357–393.ADSGoogle Scholar
  48. Mogilevsky, M.A., S.A. Bordzilovsky, and N.N. Gorshkov (1978). “Effect of the width of the front with quasiisentropic compression on the hardening of some metals,” Comb. Expl. Shock Waves 14(6), pp. 794–798 [trans. from Fiz. Goreniya Vzryva 14(6), pp. 110–116(1978)].CrossRefGoogle Scholar
  49. Mogilevsky, M.A., and I.O. Mynkin (1978). “Effect of the point defects on one-dimensional compression of a lattice,” Comb. Expl. Shock Waves 14(5), pp. 680–682. [trans. from Fiz. Goreniya Vzryva 14(5), pp. 159–163 (1978).]CrossRefGoogle Scholar
  50. Morris, C.E. (ed.) (1982). Los Alamos Shock Wave Profile Data, University of California Press, Berkeley, CA.Google Scholar
  51. Murr, L.E., E. Moin, K. Wongwiwat, and K.P. Standhammer (1978). “Effect of peak pressure and pressure-pulse duration on crystallographic transformations in shock-loaded metals and alloys,” Scripta Met. 12(5), pp. 425–431.CrossRefGoogle Scholar
  52. Razorenov, S.V., A.A. Bogach, and G.I. Kanel (1997). “Influence of heat treatment and polymorphous transformations on the dynamic rupture resistance of 40X steel,” Phys Met. Metall. 83(1), pp. 100–103 [trans. from Fiz. Metall. Metalloved. 83(1), pp. 147–152(1997)].Google Scholar
  53. Razorenov, S.V., A.A. Bogach, G.I. Kanel, A.V. Utkin, V.E. Fortov, and D.E. Grady (1998). “Elastic-Plastic Deformation and Spall Fracture of Metals at High Temperatures,” in Shock Compression of Condensed Matter1997 (eds. S.C. Schmidt, D.D. Dandekar, and J.W. Forbes) American Institute of Physics, New York, pp. 447–480.Google Scholar
  54. Razorenov, S.V., G.I. Kanel, and V.E. Fortov (1985). “Measurement of the width of shock fronts in copper,” Sov. Phys.-Tech. Phys. 30(9), pp. 1061–1062 [trans. from Zh. Tekh.Fiz. 55(9), pp. 1816–1818].Google Scholar
  55. Razorenov, S.V., G.I. Kanel, O.R. Osipova, and V.E. Fortov (1987). “Measurement of the viscosity of copper in shock loading,” High Temp. 25(1), pp. 57–61 [trans. from Teplofiz. Vys. Temp. 25(1), pp. 65–69 (1987)].Google Scholar
  56. Razorenov, S.V., G.I. Kanel, A.V. Utkin, A.A. Bogach, M. Burkins, and W.A. Gooch (2000). “Dynamic strength and edge effects at spall fracture for titanium alloys of varying oxygen content,” in: Shock Compression of Condensed Matter1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 415–418.Google Scholar
  57. Smith, C.S. (1958). “Metallographic studies of metals after explosive loading,” Trans. AIME 214, pp. 574–586.Google Scholar
  58. Swegle, J.W., and D.E. Grady (1985). “Shock viscosity and the prediction of shock wave rise times,” J. Appl. Phys. 58, pp. 692–701.ADSCrossRefGoogle Scholar
  59. Taylor, J.W. (1965). “Dislocation dynamics and dynamic yielding,” J. Appl, Phys. 36(10), pp. 3146–3150.ADSCrossRefGoogle Scholar
  60. Taylor, J.W., and M.H. Rice (1963). “Elastic-plastic properties of iron,” J. Appl. Phys. 34, pp. 364–371.ADSCrossRefGoogle Scholar
  61. Vorob’ev, A.A., A.N. Dremin, and G.I. Kanel (1974). “Dependence of the coefficients of elasticity of Al on the degree of compression in the shock wave,” J. Appl. Mech. Tech. Phys. 15(5), pp. 661–665. [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 15(5), pp. 94–100(1974).]ADSCrossRefGoogle Scholar
  62. Weaver, C.W., and M.S. Paterson (1969). “Stress-strain properties of rubber at pressures above the glass transition pressure,” J. Polym. Sci., 7 pt A-2, № 3, pp. 587–592.CrossRefGoogle Scholar
  63. Zaretsky, E.B. (1992). “X-Ray diffraction evidence for the role of stacking faults in plastic deformation of solids under shock loading,” Shock Waves 2, pp. 113–116.ADSCrossRefGoogle Scholar
  64. Zaretsky, E.B., P.A. Mogilevsky, G.I. Kanel, and V.E. Fortov (1991). “Device for investigating X-ray diffraction studies on shock-compressed materials,” High Temp. 29(5), pp. 805–811 [trans. from Teplofiz. Vys. Temp. 29(5), pp. 1002–1008 (1991)].Google Scholar
  65. Zel’dovich, Ya.B. and Yu.P. Raizer (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York. Reissued in 2002 by Dover Publications, Mineola, NY.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations