Skip to main content

General Introduction

  • Chapter

Abstract

When a shock wave propagating in a medium having a given acoustic impedance obliquely encounters another medium, having a different acoustic impedance, it experiences a reflection which is known in the literature as oblique shock wave reflection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

hi :

enthalpy in state (i)

Mi :

flow Mach number in state (i)

Ms :

incident shock wave Mach number

pi :

static pressure in state (i)

Ti :

static temperature in state (i)

ui :

flow velocity in state (i) with respect to R in RR or T in MR.

Vi :

flow velocity in state (i) in a laboratory frame of reference

Vs :

incident shock wave velocity in a laboratory frame of reference

γ:

specific heat capacities ratio

δmax(M):

maximum flow deflection angle for a flow having Mach number M through an oblique shock wave

θi :

deflection angle of the flow while passing across an oblique shock wave into state (i)

θW :

reflecting wedge angle

ρi :

flow density in state (i)

Φi :

angle of incidence between the flow and the oblique shock wave across which the flow enters into state (i)

χ, χ’:

first and second triple point trajectory angles, respectively.

0:

flow state ahead of the incident shock wave, i.

1:

flow state behind the incident shock wave, i.

2:

flow state behind the reflected shock wave, r.

3:

flow state behind the Mach stem, m.

m:

maximum deflection

s:

sonic

R:

with respect to the reflection point R

S:

strong solution

T:

with respect to the triple point T

W:

weak solution

Rerference

  • Ben-Dor, G., “Relations Between First and Second Triple Point Trajectory Angles in Double Mach Reflection”, AIAA J., Vol. 19, pp. 531–533, 1981.

    Article  ADS  Google Scholar 

  • Ben-Dor, G. & Takayama, K., “The Dynamics of the Transition from Mach to Regular Reflection over Concave Cylinders”, Israel J. Tech., Vol. 23, pp. 71–74, 1986/7.

    Google Scholar 

  • Colella, P. & Henderson, L.F., “The von Neumann Paradox for the Diffraction of Weak Shock Waves”, J. Fluid Mech., Vol. 213, pp. 71–94, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  • Courant, R. & Freidrichs, K.O., Hypersonic Flow and Shock Waves , Wiley Interscience, New York 1948.

    Google Scholar 

  • Henderson, L.F., “Exact Expressions for Shock Reflection Transition Criteria in a Perfect Gas”, ZAMM, Vol. 62, pp. 258–261, 1982.

    Article  ADS  MATH  Google Scholar 

  • Henderson, L.F. & Lozzi, A., “Experiments on Transition of Mach Reflection”, J. Fluid Mech., Vol. 68, pp. 139–155, 1975.

    Article  ADS  Google Scholar 

  • Hornung, H.G., Oertel, H. Jr. & Sandeman, R.J., “Transition to Mach Reflection of Shock Waves in Steady and Pseudo-Steady Flows with and without Relaxation”, J. Fluid Mech., Vol. 90, pp. 541–560, 1979.

    Article  ADS  Google Scholar 

  • Kawamura, R. & Saito, H., “Reflection of Shock Waves — 1. Pseudo-Stationary Case”, J. Phys. Soc. Japan, Vol. 11, pp. 584–592, 1956.

    Article  ADS  Google Scholar 

  • Krehl, P. & van der Geest, “The Discovery of the Mach Reflection Effect and Its Demonstration in an Auditorium”, Shock Waves, Vol. 1, pp. 3–15, 1991.

    Article  ADS  Google Scholar 

  • Lee, J.-H. & Glass, I.I., “Pseudo-Stationary Oblique-Shock Wave Reflections in Frozen and Equilibrium Air”, Prog. Aerospace Sci., Vol. 21, pp. 33–80, 1984.

    Article  ADS  Google Scholar 

  • Liepmann, H.W. & Roshko, A., Elements of Gasdynamics , John Wiley & Sons, New York, N.Y., U.S.A., 1957.

    MATH  Google Scholar 

  • Lock, G. & Dewey, J.M., “An Experimental Investigation of the Sonic Criterion for Transition from Regular to Mach Reflection of Weak Shock Waves”, Exp. in Fluids, Vol. 7, pp. 289–292, 1989.

    Article  ADS  Google Scholar 

  • Mach, E., “Über den Verlauf von Funkenwellen in der Ebene und im Raume”, Sitzungsbr. Akad. Wiss. Wien, Vol. 78, pp. 819–838, 1878.

    Google Scholar 

  • Neumann, J. von, “Oblique Reflection of Shocks”, Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, U.S.A., 1943a.

    Google Scholar 

  • Neumann, J. von, “Refraction, Intersection and Reflection of Shock Waves”, NAVORD Rep. 203–45, Navy Dept., Bureau of Ordinance, Washington, DC, U.S.A., 1943b.

    Google Scholar 

  • Reichenbach, H., “Contribution of Ernst Mach to Fluid Dynamics”, Ann. Rev. Fluid Mech., Vol. 15, pp. 1–28, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  • Smith, L.G., “Photographic Investigation of the Reflection of Plane Shocks in Air”, OSRD Rep. 6271, Off. Sci. Res. Dev., Washington, DC., U.S.A., or NDRC Rep. A-350, 1945.

    Google Scholar 

  • White, D.R., “An Experimental Survey of the Mach Reflection of Shock Waves”, Princeton Univ., Dept. Phys., Tech. Rep. II-10, Princeton, N.J., U.S.A., 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Dor, G. (1992). General Introduction. In: Shock Wave Reflection Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4279-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4279-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4281-7

  • Online ISBN: 978-1-4757-4279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics