On the hermitian structure of Galois modules in number fields and Adams operations

  • Boas Erez
Part of the Progress in Mathematics book series (PM, volume 102)


In this paper I will present a number of results which have been obtained by several authors on the hermitian structure of Galois modules in number fields, mainly on rings of integers equipped with the trace form. My aim is to give an organic presentation of results, which are scattered over a dozen of different papers, to show how these fit together and also to emphasize the salient features of the different contributions. I will only consider tamely ramified extensions and I will only focus on very recent results since there already exist surveys of related results which I do not include here (see [CN], [E2]). This is why the Main Theorem of this paper is the one between Theorems E and F below...


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-L]
    E. Bayer, H.W. Lenstra.–Forms in odd degree extensions and self-dual normal bases, American J. of Math. 112, (1990), 359–373.CrossRefzbMATHGoogle Scholar
  2. [CM]
    Ph. Cassou-Noguès. — Artin root numbers and hermitian Galois modules, to appear in the proceedings of a conference on L-functions and arithmetic, at Durham, 1989.Google Scholar
  3. [CN-T1]
    Ph. Cassou-Noguès, M.J. Taylor.–Constante de l’équation fonctionnelle de la fonction L d’Artin d’une représentation symplectique et modérée, Ann. Inst. Fourier 33, (1983), 1–17.CrossRefGoogle Scholar
  4. CN-T2] Ph. Cassou-Noguès, M.J. Taylor.–Local root numbers and hermitian Galois module structure of rings of integers, Math. Ann. 263, (1983), 251–261.MathSciNetCrossRefzbMATHGoogle Scholar
  5. CN-T3] Ph. Cassou-Noguès, M.J. Taylor.–Opérations d’Adams et groupes de classes d’algèbres de groupe, J. of Algebra 95, (1985), 125–152.CrossRefzbMATHGoogle Scholar
  6. CN-T4] Ph. Cassou-Noguès, M.J. Taylor. - The trace form and Swan modules, to appear.Google Scholar
  7. [Cha]
    S. Chase.–Ramification invariants and torsion Galois module structure in number fields, J. of Algebra 91, (1984), 207–257.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [C-P]
    P.E. Conner, R. Perlis. - A survey of trace forms of algebraic number fields, Singapore: World Scientific, 1984.CrossRefzbMATHGoogle Scholar
  9. [El]
    B. Erez. - The Galois structure of the square root of the inverse different, to appear in Math. Z Google Scholar
  10. E2] B. Erez. — A survey of recent work on the square root of the inverse different, to appear in the proceeding of the Journées Arithmétiques 1989 at Luminy.Google Scholar
  11. E-M] B. Erez, J. Morales. —The hermitian structure of rings of integers in odd degree abelian extensions, to appear in J. of Number Theory.Google Scholar
  12. E-T] B. Erez, M.J. Taylor. — Hermitian modules in Galois extensions of number fields and Adams operations, to appear in Annals of Math.Google Scholar
  13. F1] A. Fröhlich. — Locally free modules over arithmetic orders, J. reine angew. Math. 274, (1975) 112–124.Google Scholar
  14. [F2]
    A. Fröhlich. — Arithmetic and Galois module structure for tame extensions, J. reine angew. Math. 286/287, (1976), 380–440.Google Scholar
  15. [F3]
    A. Fröhlich. — Galois module structure of algebraic integers, Ergebnisse der Mathematik, 3. Folge, Bd. 1, Berlin: Springer, 1983.CrossRefGoogle Scholar
  16. [F4]
    A. Fröhlich. — Class groups and hermitian modules, Progress in Mathematics, Vol. 48, Boston: Birkhäuser, 1984.CrossRefGoogle Scholar
  17. [F5]
    A. Fröhlich. — Tame representations of local Weil groups and chain groups of local principal orders, Sitzungsberichte der Heidelberger Ak. der Wiss. Abh. 3 (1986): Springer, 1986.Google Scholar
  18. [F6]
    A. Fröhlich. — Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. reine angew. Math. 360, (1985), 84–123.MathSciNetGoogle Scholar
  19. [F7]
    A. Fröhlich. — Galois module structure and root numbers for quaternion extensions of degree 2n, J. Number Theory 12, (1980), 499–518.MathSciNetCrossRefGoogle Scholar
  20. [S]
    J.-P. Serre. — L’invariant de Witt de la forme Tr(X 2 ), Comm. Math. Helv. 59, (1984), 651–676, (= CEuvres Vol. III, N° 131, 675–700 ).Google Scholar
  21. [T1]
    M.J. Taylor. — On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63, (1981), 41–79.MathSciNetCrossRefzbMATHGoogle Scholar
  22. T2] M.J. Taylor. — Rings of integers and trace forms for tame extensions of odd degree, Math. Z. 202, (1989) 313–341.Google Scholar
  23. [T3]
    M.J. Taylor. - Classgroups of group rings, London Mathematical Society Lecture Note Series 91, Cambridge: Cambridge University Press, 1984.Google Scholar
  24. [T4]
    M.J. Taylor.–On the self-duality of a ring of integers as a Galois module, Invent. Math. 46, (1978), 173–177.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Boas Erez
    • 1
  1. 1.Department of Mathematics Science CenterHarvard UniversityCambridgeUSA

Personalised recommendations