Numerical Modeling with Groundwater Ages

  • Mebus A. Geyh


The use of 14C analysis for dating groundwater with ages up to about 40,000 BP was introduced by Münnich (1957, 1968). Eriksson (1958) proved that hydrodynamic mixing processes usually must be taken into account. But the piston flow model assuming simple convective flow is still used for the interpretation of 14C data (eg, Andres & Geyh 1970; Bath, Edmunds & Andrews 1979), despite its obvious oversimplification of the usual hydraulic situation.


Environmental Isotope Sandstone Aquifer Hydrochemical Process Nile Water Mass Transport Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, G and Geyh, MA 1970 Isotopen-physikalische Untersuchungen über den Grundwasserhaushalt im überdeckten Sandsteinkeuper mit Hilfe von 14C- und 3H-Wasseranalysen. Die Wasserwirtschaft 8: 259–263.Google Scholar
  2. Bath, AH, Edmunds, WM and Andrews, JN 1979 Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. Isotope Hydrology 1978 ( 2 ). Vienna, IAEA: 545–566.Google Scholar
  3. Burdon, DJ 1977 Flow of fossil groundwater. Quarterly Journal of Engineering Geology 10: 97–124.CrossRefGoogle Scholar
  4. Eriksson, E 1958 The possible use of tritium for estimating groundwater storage. Tellus 10: 472–479.CrossRefGoogle Scholar
  5. Fontes, JC and Gamier, JM 1979 Determination of the initial 14C activity of the total dissolved carbon. A review of the existing models and a new approach. Water Resources Research 15: 399–413.CrossRefGoogle Scholar
  6. Fröhlich, K, Geyh, MA, Verhagen, BT and Wirth, K 1987 Isotopenhydrologische Methoden zur Begutachtung von Grundwasser in Trockengebieten. Entwicklung eines Instrumentariums für die Beurteilung gefährderter Vorkommen. Forschungsberichte des Bundesministeriums für wirtschaftliche Zusammenarbeit 85. Cologne, Welt-Forum: 179 p.Google Scholar
  7. Geyh, MA 1972 Basic studies in hydrology and 14C and 3H measurements. Proceedings of the 24th International Geology Congress 11: 227–234.Google Scholar
  8. Geyh, MA 1980 Hydrogeologie interpretation of the 14C content of groundwater — a status report. Fisika 12: 87–106.Google Scholar
  9. Geyh, MA 1980 aquifer systems for interpretation of chemical and environmental isotope data. In Mathematical Models for hiterpretation of Tracer Data in Groundwater Hydrology (IAEA-TECDOC-381). Vienna, IAEA: 165–179.Google Scholar
  10. Geyh, MA and Backhaus, G 1979 Hydrodynamic aspects of carbon-14 groundwater dating. Isotope Hydrology 1978 ( 2 ). Vienna, IAEA: 631–643.Google Scholar
  11. Geyh, MA, Backhaus, G, Andres, G, Rudolph, J and Rath, HK 1984 Isotope study on the Keuper sandstone aquifer with a leaky cover layer. Isotope Hydrology 1983. Vienna, IAEA: 499–513.Google Scholar
  12. Geyh, MA, Khouri, J, Rajab, R and Wagner, W 1985 Environmental isotope study in the Hamad region. Geologisches Jahrbuch C38: 3–15.Google Scholar
  13. Geyh, MA and Sonne, V 1983 Monitoring of groundwater budget changes with isotope techniques in the NE Mainz Basin. Proceedings of the International Conference on Groundwater Resources Plan D: 357365.Google Scholar
  14. Ingerson, E and Pearson, FJ, Jr, 1964 Estimation of age and rate of motion of groundwater by the 14C method. In Recent Researches in the Fields of Hydrosphere, Atmosphere, and Nuclear Geochemistry. Tokyo, Maruzen: 263–283.Google Scholar
  15. Mazor, E, Kaufman, A and Carmi, I 1973 Hammat Geder (Israel): Geochemistry of a mixed thermal spring complex. Journal of Hydrology 18: 289–303.CrossRefGoogle Scholar
  16. Mook, WG 1976 The dissolution-exchange model for dating groundwater with 14C. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. Vienna, IAEA: 213–225.Google Scholar
  17. Münnich, KO 1957 Messung des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften 34: 32–33.CrossRefGoogle Scholar
  18. Münnich, KO 1968 Isotopen-Datierung von Grundwasser. Naturwissenschaften 55: 158–163.CrossRefGoogle Scholar
  19. Pearson, FJ, Jr, Noronha, CJ and Andrews, RW 1983 Mathematical modeling of the distribution of natural 14C, 234U, and 238U in a regional ground-water system. In Stuiver, M and Kra, RS, eds, Proceedings of the 11th International 14C Conference. Radiocarbon 25 (2): 291–300.Google Scholar
  20. Phillips, FM, Tansey, MK, Peeters, LA, Cheng, S and Long, A 1989 An isotopic investigation of groundwater in the Central San Juan Basin, New Mexico: Carbon 14 dating as a basis for numerical modeling. Water Resources Research 25: 2259–2273.CrossRefGoogle Scholar
  21. Reardon, ET and Fritz, PE 1978 Computer modeling of groundwater 13C and 14C isotope compositions. Journal of Hydrology 36: 201–224.CrossRefGoogle Scholar
  22. Tamers, MA 1967 Surface-water infiltration and groundwater movement in arid zones of Venezuela. Isotopes in Hydrology: 339–353.Google Scholar
  23. Tamers, MA, Stipp, JJ and Weiner, R 1975 Radiocarbon ages of groundwater as a basis for the determination of safe limits of aquifer exploitation. Environmental Research 9: 250–264.CrossRefGoogle Scholar
  24. Wigley, TML 1977 Carbon-14 dating of groundwater from closed and open systems. Water Resources Research 11: 324–328.CrossRefGoogle Scholar
  25. Wigley, TML, Plummer, LN and Pearson, FJ, Jr, 1978 Mass transfer and carbon isotope evolution in natural water systems. Geochimica et Cosmochimica Acta 42: 1117–1139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Mebus A. Geyh

There are no affiliations available

Personalised recommendations