Human Milk Protective Mechanisms

  • Thomas G. Cleary
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 554)


The survival of a nonimmune infant faced with a new pathogen depends in part on an array of specific and nonspecific human milk factors. Human milk protects via multiple redundant strategies. It targets shared virulence mechanisms to provide cross protection. By interfering with fundamental processes such as attachment to glycoconjugates, human milk anticipates new mutations and new pathogens that utilize carbohydrates as receptors. Furthermore, human milk IgA present appears to reflect long-term maternal immunologic memory. These overlapping protective strategies endow human milk with the unique ability to protect infants from organisms that mutate rapidly and are present in vast numbers.


Human Milk Secretion System Shiga Toxin Shigella Flexneri Breastfed Infant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson B, Porras O, Hanson LA, Lagergard T, Svanborg-Eden C. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J Infect Dis 1986;153:232–237.CrossRefGoogle Scholar
  2. Batta G, Liptak A, Schneerson R, Pozsgay V. Conformational stabilization of the altruronic acid residue in the O-specific polysaccharide of Shigella sonnei/Plesiomonas shigelloides. Carbohydr Res 1997;305:93–99.PubMedCrossRefGoogle Scholar
  3. Carlin NI, Lindberg A A. Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type IV, V, and VI antigens group 3,4 antigen, and an epitope common to all Shigella flexneri and Shigella dysenteriae type 1 strains. Infect Immun 1987;55:1412–1420.PubMedGoogle Scholar
  4. Cleary TG, Chambers JP, Pickering LK. Protection of suckling mice from the heat-stable enterotoxin of Escherichia coli by human milk. J Infect Dis 1983;48:1114–1119.CrossRefGoogle Scholar
  5. Cleary TG, Winsor DK, Reich D, Ruiz-Palacios G, Calva JJ. Human milk immunoglobulin A antibodies to Shigella virulence determinants. Infect Immun 1989;57:1675–1679.PubMedGoogle Scholar
  6. Cleary TG, West MS, Ruiz-Palacios G, Winsor DK, Calva JJ, Guerrero ML, Van R. Human milk secretory immunoglobulin A to Shigella virulence plasmid-coded antigens. J Pediatr 1991 ; 118:34–38.Google Scholar
  7. Cravioto A, Tello A, Villafan H, Ruiz J, del Vedovo S, Neeser JR. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 1991;163:1247–1255.PubMedCrossRefGoogle Scholar
  8. Cruz JR, Gil L, Cano F, Caceres P, Pareja G. Breast milk anti-Escherichia coli heat-labile toxin IgA antibodies protect against toxin-induced infantile diarrhea. Acta Paediatr Scand 1988;77:658–662.PubMedCrossRefGoogle Scholar
  9. Dinari G, Hale TL, Austin SW, Formal SB. Local and systemic antibody responses to Shigella infection in rhesus monkeys. J Infect Dis 1987;155:1065–1069.PubMedCrossRefGoogle Scholar
  10. Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 1991;88:7160–7164.PubMedCrossRefGoogle Scholar
  11. Glass RI, Svennerholm AM, Stoll BJ, Khan MR, Hossain KM, Huq MI, Holmgren J. Protection against cholera in breast-fed children by antibodies in breast milk. N Engl J Med 1983;308:1389–1392.PubMedCrossRefGoogle Scholar
  12. Gomez HF, Ho H, Shah S, Lopez EL, Cleary TG. Mapping epitopic regions of shiga toxin b-subunit using milk secretory immunoglobulin A (slgA). In: Karmali MA, Goglio AG, editors. Recent Advances in Verocytotoxin-producing Escherichia coli Infections. New York: Elsevier Science B.V., 1995; pp 345–347.Google Scholar
  13. Gomez HF, Herrera-Insua I, Siddiqui MM, Diaz-Gonzalez VA, Caceres E, Newburg DS, Cleary TG. Protective role of human lactoferrin against invasion of Shigella flexneri M90T. Adv Exp Med Biol 2001;501:457–467.PubMedCrossRefGoogle Scholar
  14. Gomez HF, Ochoa TJ, Herrera-Insua I, Carlin LG, Cleary TG. Lactoferrin protects rabbits from Shigella flexneri-induced inflammatory enteritis. Infect Immun 2002;70:7050–7053.PubMedCrossRefGoogle Scholar
  15. Gomez HF, Ochoa TJ, Carlin LG, Cleary TG. Human lactoferrin impairs virulence of Shigella flexneri. J Infect Dis 2003;187:87–95.PubMedCrossRefGoogle Scholar
  16. Hayani KC, Guerrero ML, Ruiz-Palacios GM, Gomez HF, Cleary TG. Evidence for long-term memory of the mucosal immune system: milk secretory immunoglobulin A against Shigella lipopolysaccharides. J Clin Microbiol 1991;29:2599–603.PubMedGoogle Scholar
  17. Hayani KC, Guerrero ML, Morrow AL, Gomez HF, Winsor DK, Ruiz-Palacios GM, Cleary TG. Concentration of milk secretory immunoglobulin A against Shigella virulence plasmid-associated antigens as a predictor of symptom status in Shigella-infected breast-fed infants. J Pediatr 1992;121:852–856.PubMedCrossRefGoogle Scholar
  18. Herrera-Insua I, Gomez HF, Diaz-Gonzalez VA, Chaturvedi P, Newburg DS, Cleary TG. Human milk lipids bind SLT-I. Adv Exp Biol Med 2001:501;333–340.CrossRefGoogle Scholar
  19. Keren DF. Models to follow secretory IgA response to mucosal infections. Pathol Immunopathol Res 1987;6:128–136.PubMedCrossRefGoogle Scholar
  20. Kontrohr T. The identification of 2-amino-2-deoxy-L-altruronic acid as a constituent of Shigella sonnei phase I lipopolysaccharide. Carbohydr Res 1977;58:498–500.PubMedCrossRefGoogle Scholar
  21. Newburg DS, Pickering LK, McCluer RH, Cleary TG. Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin of Escherichia coli. J Infect Dis 1990;162:1075–1080.PubMedCrossRefGoogle Scholar
  22. Newburg DS, Linhardt RJ, Ampofo SA, Yolken RH. Human milk glycosaminoglycans inhibit HIV glycoprotein gp 120 binding to its host cell CD4 receptor. J Nutr 1995;125:419–424.PubMedGoogle Scholar
  23. Newburg D, Peterson J, Ruiz-Palacios G, Matson D, Morrow A, Shults J, Guerrero M, Chaturvedi P, Newburg S, Scallan C, Taylor M, Ceriani R, Pickering L. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 1998;351:1160–1164.CrossRefGoogle Scholar
  24. Noguera-Obenza M, Ochoa TJ, Gomez HF, Guerrero ML, Herrera-Insua I, Morrow AL, Ruiz-Palacios G, Pickering LK, Guzman CA, Cleary TG. Human milk secretory antibodies against attaching and effacing Escherichia coli antigens. Emerg Infect Dis 2003;9:545–551.PubMedCrossRefGoogle Scholar
  25. Ruiz-Palacios G, Calva JJ, Pickering LK, Lopez-Vidal Y, Volkow P, Pezzarossi H, West MS. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J Pediatr 1990; 116:707–713.CrossRefGoogle Scholar
  26. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1,2Gal β1,4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 2003;278:14112–14120.CrossRefGoogle Scholar
  27. Walterspiel JN, Morrow AL, Guerrero ML, Ruiz-Palacios GM, Pickering LK. Secretory anti-Giardia lamblia antibodies in human milk: protective effect against diarrhea. Pediatrics 1994;93:28–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Thomas G. Cleary
    • 1
  1. 1.Department of Pediatrics, Division of Infectious DiseasesUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations