Advertisement

Drug Inhibition of Experimental Carotid Atherogenesis

  • Eberhard L. Betz

Abstract

It is well known that a number of risk factors exists for atherogenesis and that reduction of these factors (cholesterol, smoking, hypertension, etc.) is recommended to prevent progression of this disease. Drugs that reduce hyperlipidemia or hypertension play a supporting role in the treatment of some forms of atherosclerosis. At the vessel wall level other factors are additionally involved (Table 5.1).

Keywords

Carotid Artery Smooth Muscle Cell Proliferation Endothelial Permeability Drug Inhibition Endothelial Lining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedman M, Byers S. Endothelial permeability in atherosclerosis. Arch Pathol. 1963;76:111–117.Google Scholar
  2. 2.
    Friedman RJ, More S, Singal DP. Repeated endothelial injury and induction of atherosclerosis in normolipidemic rabbits by human serum. Lab Invest. 1975;32:404.PubMedGoogle Scholar
  3. 3.
    Bell FP, Adamson JL, Schwartz CJ. Aortic endothelial permeability of albumin. Focal and regional patterns to uptake and transmural distribution of 131-J-albumin in the young pig. Exp Mol Path. 1974;20:57–61.CrossRefGoogle Scholar
  4. 4.
    Constantinides P. The role of the endothelium in atherosclerosis. Verh Dtsch Ges Inn Medizin. 1975; 81:839–843.Google Scholar
  5. 5.
    Kurozumi T. Electron microscopic study on permeability of the aorta and basilar artery of the rabbit—with special reference to the changes of permeability by hypercholesteremia. Exp Mol Path. 1975;23:1–11.CrossRefGoogle Scholar
  6. 6.
    Jellinek H, Elemer G. Die Transportstörungen der Arterienwand als Initialfaktor der zellulären Reaktion. Atherogenese. 1976; 1:20.Google Scholar
  7. 7.
    Adams CWM, Bayliss OB, Morgan RS. Permeability in atherosclerosis: Fluorescence test in green light with trypan blue. Atherosclerosis. 1977;27: 353–359.PubMedCrossRefGoogle Scholar
  8. 8.
    Bratzler RL, Chisholm GM, Colton CK, et al. The distribution of labelled albumin across the rabbit thoracic aorta in vivo. Circulat Res. 1977;40:182–190.PubMedCrossRefGoogle Scholar
  9. 9.
    Constantinides P. The morphological basis for altered endothelial permeability in atherosclerosis. Atherosclerosis. 1977;82:969–974.Google Scholar
  10. 10.
    Schwartz SM. Role of endothelial integrity in atherosclerosis. Artery. 1980;8:305–314.PubMedGoogle Scholar
  11. 11.
    Caro CG, Lever MJ, Laver-Rudich Z, et al. Net albumin transport across the wall of the rabbit common carotid artery perfused in situ. Atherosclerosis. 1980;37:497–511.PubMedCrossRefGoogle Scholar
  12. 12.
    Schmid G. Permeabilität der Arterienwand bei tierexperimenteller Arteriosklerose. In: Betz E, Fischer H, eds. Das Gefässendothel. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; 1981: 96–109.Google Scholar
  13. 13.
    Pfeffer R, Ganatos P, Nir A, Weinbaum S. Diffusion of macromolecules across the arterial wall in the presence of multiple endothelial injuries. J Biochmech Engn. 1981;103:197–203.CrossRefGoogle Scholar
  14. 14.
    Fujino M. Ultrastructural studies of the mouse aorta and its endothelial pinocytosis in diet-induced arteriosclerosis. Acta Path Jpn. 1983;33:1115–1130.Google Scholar
  15. 15.
    Veress B, Balint A, Kocze A, et al. Increasing aortic permeability by atherogenic diet. Atherosclerosis. 1970;11:369–370.PubMedCrossRefGoogle Scholar
  16. 16.
    Holle G, Massmann J, Weidenbach H. Experimentally induced early changes in arteries. Path Eur. 1974;9:125–132.Google Scholar
  17. 17.
    Minick CR, Stemerman MB, Insull W. Role of endothelium and hypercholesterinaemia in intima thickening and lipid accumulation. Am J Pathol. 1979;95:131–158.PubMedGoogle Scholar
  18. 18.
    Copley AL. The physiological significance of the endothelial fibrin lining (EEFL) as the critical interface in the “vessel-blood organ” and the importance of in vivo “fibrinogen formation” in health and disease. Thromb Res. 1983;(suppl. 5): 105–145.Google Scholar
  19. 19.
    Lindner V. Permeabilitätsänderungen der Arterienwand im Initialstadium experimenteller Atherosklerose. Diss. Tübingen 1984Google Scholar
  20. 20.
    Apfel H, Betz E, Strohschneider T. Änderungen der Permeabilität und der elektrischen Leitfähigkeit von Arterienwänden bei der experimentellen Atherogenese. Funktionsanalyse biologischer Systeme. 1986;15:27–33 (Stuttgart: Steiner Verlag).Google Scholar
  21. 21.
    Gerrity RG. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981; 103: 181–190.PubMedGoogle Scholar
  22. 22.
    Gerrity RG. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol. 1981;103:191–200.PubMedGoogle Scholar
  23. 23.
    Trillo AA. The cell population of aortic fatty streaks in African green monkeys with special reference to granulocytic cells: an ultrastructural study. Atherosclerosis. 1982;43:259–275.PubMedCrossRefGoogle Scholar
  24. 24.
    Joris J, Zand T, Nunnari JJ, et al. Studies on the pathogenesis of atherosclerosis: I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983; 113: 341–358.PubMedGoogle Scholar
  25. 25.
    Faggiotto A, Ross R, Harker E. Studies of hypercholesterolemia in the nonhuman primate: I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984;4:323–346.PubMedCrossRefGoogle Scholar
  26. 26.
    Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate: II. Fatty streaks conversion to fibrous plaques. Arteriosclerosis. 1984;4:341–356.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenfeld ME, Faggiotto A, Ross R. The role of mononuclear phagocyte in primate and rabbit models of atherosclerosis. Proceedings of the Fourth Leiden Conference on Mononuclear Phagocytes. The Hague: Martinus Nijhoff; 1985.Google Scholar
  28. 28.
    Watanabe T, Hirata M, Yoshikawa Y, et al. Role of macrophages in atherosclerosis: Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab Invest. 1985;53:80–90.PubMedGoogle Scholar
  29. 29.
    Schwartz CJ, Sprague EA, Kelley JL, et al. Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus). An ultrastructural study: implications in atherogenesis. Virchows Arch A Pathol Anat Histopath. 1985;405:175–191.CrossRefGoogle Scholar
  30. 30.
    Nilsson J. Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis. 1986;62:185–199.PubMedCrossRefGoogle Scholar
  31. 31.
    Jonasson L, Holm J, Skalli O, et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6:131–138.PubMedCrossRefGoogle Scholar
  32. 32.
    Schwartz CJ, Valente AJ, Sprague EA, et al. Monocyte-macrophage participation in atherogenesis: Inflammatory components of pathogenesis. Seminars in Thrombosis and Hemostasis. 1986;12:79–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Kling D, Holzschuh T, Strohschneider T, et al. Enhanced endothelial permeability and invasion of leukocytes into the artery wall as initial events in experimental arteriosclerosis. Inter Angio. 1987; 6:21–28.Google Scholar
  34. 34.
    Kling D, Holzschuh T, Betz E. Temporal sequence of morphological alterations in artery walls during experimental atherogenesis. Res Exp Med. 1987; 187:237–250.CrossRefGoogle Scholar
  35. 35.
    Meessen H, Kojimahara M, Franken T, et al. Alteration of the rabbit aorta following feeding of cholesterol diet in combination with sheathing of aortic segments by polyethylene tubes. Beitr Path. 1975;154:218–232.CrossRefGoogle Scholar
  36. 36.
    Booth RFG, Honey AC, Moncada S, et al. Enhancement of focal intimal proliferation in the rabbit carotid by cholesterol feeding. Proceedings of the Eighth International Symposium on Atherosclerosis; 1988;Rome:CI C Edizioni Internazionali Stampa Tekno Press; 1988:p 98. AbstractGoogle Scholar
  37. 37.
    Booth RFG, Martin JF, Honey AC, et al. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989;76:257–268.PubMedCrossRefGoogle Scholar
  38. 38.
    Seuter F, Sitt R, Busse WD. Experimentally induced thromboatherosclerosis in rats and rabbits. Folia Angiol. 1980;28:85–87.Google Scholar
  39. 39.
    Baumgartner HR, Studer A. Gezielte Überdehnung der Aorta abdominalis am normo- und hyper-cholesterinämischen Kaninchen. Path Microbiol. 1963;26:129–148.Google Scholar
  40. 40.
    Baumgartner HR, Studer A. Smooth muscle cell proliferation and migration after removal of arterial endothelium in rabbits. In: Schettler G, Stange E, Wissler RW, eds. Atherosclerosis—is it reversible? New York, NY: Springer-Verlag; 1978: pp 12–18.CrossRefGoogle Scholar
  41. 41.
    Betz E, Schlote W. Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol. 1979;74:10–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Ignatowski AC. Influence of animal food on the organism of rabbits. S Peterb hviest Imp Voyenno-Med Akad. 1908;16:154–173.Google Scholar
  43. 43.
    Kritchevsky D, Moyer AW, Tesar WC, et al. Effects of cholesterol vehicle in experimental atherosclerosis. Am J Physiol. 1954;178:30–32.PubMedGoogle Scholar
  44. 44.
    Schettler G, ed. Arteriosklerose. Ätiologie, Pathologie, Klinik und Therapie. Stuttgart: Georg Thieme Verlag; 1961.Google Scholar
  45. 45.
    Meyer WW. Die Arteriosklerose im Tierexperiment. In: Kaufmann E, Staemmler M, Erg Bd I, eds. Lehrbuch der speziellen pathologischen Anatomie. 1. Hälfte. Berlin: Walter de Gruyter; 1969:591–652.Google Scholar
  46. 46.
    Kritchevsky D. Role of cholesterol vehicle in experimental atherosclerosis. Am J Clin Nutr. 1970;23: 1105–1110.PubMedGoogle Scholar
  47. 47.
    Schettler G, Weizel A, ed. Atherosclerosis III. New York, NY: Springer-Verlag; 1974.Google Scholar
  48. 48.
    Ross R, Harker L. Hyperlipidemia and atherosclerosis. Science. 1976;193:1094–1100.PubMedCrossRefGoogle Scholar
  49. 49.
    Schettler G, Goto Y, Hata Y, et al., eds. Atherosclerosis IV. New York, NY: Springer-Verlag; 1977.Google Scholar
  50. 50.
    Kritchevsky D, Davison LM, Kim HK, et al. Influence of semipurified diet on atherosclerosis in African green monkeys. Exp Mol Pathol. 1977; 26:28–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Wissler RW. Risk factors and regression. In: Schettler G, Stange E, Wissler RW, eds. Atherosclerosis — is it reversible? New York, NY: Springer-Verlag; 1978:93–101.CrossRefGoogle Scholar
  52. 52.
    Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endo-cytosis. Nature. 1979;279:679–685.PubMedCrossRefGoogle Scholar
  53. 53.
    Gerrity RG, Naito HK, Richardson M, et al. Dietary induced atherogenesis in swine. Am J Pathol. 1979;95:775–785.PubMedGoogle Scholar
  54. 54.
    Vesselinovitch D, Fischer-Dzoga K. Techniques in pathology in atherosclerosis research. Adv in Lipid Res. 1981;18:1–63.Google Scholar
  55. 55.
    Wissler RW. Neuste Studien über die Pathogenese und Rückbildung der Atherosklerose. Therapiewoche. 1982;32:3735–3745.Google Scholar
  56. 56.
    Kritchevsky D. Experimental atherosclerosis, diet and drugs. In: Born GVR, Catapano AL, Paoletti R, eds. Factors in Formation and Regression of the Atherosclerotic Plaque. New York, NY: Plenum Publ Corp; 1982: pp 95–105.CrossRefGoogle Scholar
  57. 57.
    Schettler G. Zur Pathogenese der Arteriosklerose. Hämostaseologie. 1982;2:3–6.Google Scholar
  58. 58.
    Assmann G. Zur Ätiologie der Atherosklerose. Hämostaseologie. 1982;2:162–168.Google Scholar
  59. 59.
    Assmann G. Lipidstoffwechsel und Atherosklerose. Stuttgart: Schattauer-Verlag, 1982.Google Scholar
  60. 60.
    Joris I, Billingham ME, Majno G. Human coronary arteries: an ultrastructural search for the early changes of atherosclerosis. Fed Proc. 1984;43:710.Google Scholar
  61. 61.
    Goldstein JL, Brown MS, Anderson GW, et al. Receptor-mediated endocytosis. Concepts emerging from the LDL receptor system. Ann Rev Cell Biol. 1985;1:1–39.PubMedCrossRefGoogle Scholar
  62. 62.
    Haust MD. Recent concepts on the pathogenesis of atherosclerosis. Can Med Assn J. 1989; 140:929.Google Scholar
  63. 63.
    Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med. 1976;295:420–425.PubMedCrossRefGoogle Scholar
  64. 64.
    Ross R, Glomset J, Harker L. Response to injury and atherogenesis. Am J Pathol. 1977;86:675–684.PubMedGoogle Scholar
  65. 65.
    Ross R, Glomset J, Harker L. The response to injury and atherogenesis: The role of endothelium and smooth muscle. Atherosclerosis Rev. 1978;3: 69–75.Google Scholar
  66. 66.
    Ross R, Faggiotto A, Bowen-Pope D, et al. The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulat. 1984;70: III-77-III-82.Google Scholar
  67. 67.
    Ross R. Platelets—endothelial and smooth muscle proliferation. In: Dingle JT, Gordon JL, eds. Cellular Interactions. Elsevier, North-Holland: Biomed Press; 1981;6:177.Google Scholar
  68. 68.
    Ross R. Growth factors in the pathogenesis of atherosclerosis. Acta Med Scand. 1987;221(Suppl. 715):33–38.Google Scholar
  69. 69.
    Betz E, Hämmerle H. Arterienwandproliferate und Zellkulturen als Indikatoren für Hemmstoffe der Atherogenese. Funkt Biol Med. 1984;3:46–55.Google Scholar
  70. 70.
    Apfel H. Ein zwei-Elektroden-Messverfahren zur in vivo-Bestimmung der elektrischen Impedanz arterieller Blutgefässe im Frequenzbereich von 1 kHz bis 100 kHz. Biomed Technik. 1988;33(Erg. Bd2):309–310.Google Scholar
  71. 71.
    Apfel H. Electrical impedance of the carotid artery in response to various types of stress. In: Liepsch D, ed. Proceedings of the second International Symposium on Biofluid Mechanics and Bio-rheology Munich Institut für Biotechnik, 1989; pp 267–276.Google Scholar
  72. 72.
    Apfel H, Kaufmann J, Betz E. Electrical conductivity of the vessel wall in normal and arteriosclerotic carotid arteries. Pflügers Arch. 1988; 412(suppL 1):R88.Google Scholar
  73. 73.
    Viele D, Betz E. Effect of the calcium entry blocker, Flunarizine, on ruthenium red uptake by endothelial cells following acute electrical stimulation of rabbit carotid arteries. Basic Res Cardiol. 1985;80:58–65.CrossRefGoogle Scholar
  74. 74.
    Jellinek H. Stofftransport in der Gefösswand bei Frühveränderungen der Arteriosklerose. Z Ges Inn Med. 1978;33:599–601.Google Scholar
  75. 75.
    Heinle H, Lindner V. The binding of Evans blue to collagen and elastin in elastic tissue. Arch Int Physiol Biochem. 1984;92:13–17.CrossRefGoogle Scholar
  76. 76.
    Strohschneider T, Betz E. Hemmwirkungen von Calciumeintrittsblockern auf den transendothelialen Transport von Peroxidase. Angio Archiv. 1985; 7:100–103.Google Scholar
  77. 77.
    Jellinek H, Fiizesi S, Solti F, et al. Ultrastructural study of canine aortic damage caused by disturbance of transmural transport. Exp Mol Path. 1986;44:67–75.CrossRefGoogle Scholar
  78. 78.
    Strohschneider T, Betz E. Densitometric measurement of increased endothelial permeability in arteriosclerotic plaques and inhibition of permeability under the influence of two calcium antagonists. Atherosclerosis. 1989;75:135–144.PubMedCrossRefGoogle Scholar
  79. 79.
    Strohschneider T, Betz E. Die Wirkung von Pentoxifyllin auf die Arterienwandpermeabilität. Perfusion. 1988;2/88:50–55.Google Scholar
  80. 80.
    Karnovsky MJ. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967;35:213–236.PubMedCrossRefGoogle Scholar
  81. 81.
    Forssmann WG. A method for in vivo diffusion tracer studies combining perfusion fixation with intravenous tracer injection. Histochemie. 1969; 20:277–286.PubMedCrossRefGoogle Scholar
  82. 82.
    Betz E, Hämrnerle H, Strohschneider T. Inhibition of smooth muscle cell proliferation and endothelial permeability with Flunarizine in vitro and in experimental atheromas. Res Exp Med. 1985; 185:325–340.CrossRefGoogle Scholar
  83. 83.
    Strohschneider T, Kling D, Betz E. The effect of pentoxifylline on endothelial permeability of rabbit carotid artery wall. Europ J Pharmacol. 1988; 150: 287–293.CrossRefGoogle Scholar
  84. 84.
    Gratzner HG Monoclonal antibody to 5-Bromo- and 5-Jododeoxy-uridine: a new reagent for detection of DNA replication. Science. 1982;218:474–475.PubMedCrossRefGoogle Scholar
  85. 85.
    Morstyn G, Hsu SM, Kinsella T, et al. Bromo-deoxyuridine in tumors and chromosomes detected with a monoclonal antibody. J Clin Invest. 1983; 72:1844–1850.PubMedCrossRefGoogle Scholar
  86. 86.
    Fingerle J, Kraft T. The induction of smooth muscle cell proliferation in vitro using an organ culture system. Inter Angio. 1987;6:65–72.Google Scholar
  87. 87.
    Labarca C, Paigen K. A simple, rapid and sensitive DNA assay procedure. Ann Biochem. 1980; 102: 344–352.CrossRefGoogle Scholar
  88. 88.
    Rotman B, Papermaster BW. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA. 1966;55:134–141.PubMedCrossRefGoogle Scholar
  89. 89.
    Netuschil L, Schmalz G. Lebendbestimmung kariogener Bakterien mittels Fluoresceindiacetat. Kariesprophylaxe. 1981; 3:75 – 79.Google Scholar
  90. 90.
    Netuschil L: Vitalfarbung von Plaque-Mikro-organismen mit Fluorescein-diacetat und Ethidi-umbromid. Dtsch zahnärztl Z. 1983;38:914–917.PubMedGoogle Scholar
  91. 91.
    Lippman MM, Mathews, MB: Heparins. Varying effects on cell proliferation in vitro and lack of correlation with anticoagulant activity. Fed Proc. 1977;36:55–59.PubMedGoogle Scholar
  92. 92.
    Guyton JR, Rosenberg RD, Clowes AW, et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circulat Res. 1980; 46:625–634.PubMedCrossRefGoogle Scholar
  93. 93.
    Hoover RL, Rosenberg R, Haering W, et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin. Circulat Res. 1980;47:578–583.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakao J, Ito H, Ooyama T, et al. Calcium dependency of aortic smooth muscle cell migration induced by 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid. Effects of A23187, Nicardipine and Trifluoperazine. Atherosclerosis. 1983;46:309–319.PubMedCrossRefGoogle Scholar
  95. 95.
    Blaes N, Boisell JP. Growth-stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J Cell Physiol. 1983;116:167–172.PubMedCrossRefGoogle Scholar
  96. 96.
    Majack RA, Clowes AW. Inhibition of vascular smooth muscle cell migration by heparin-like glyco-saminoglycans. J Cell Physiol. 1984;118:253–256.PubMedCrossRefGoogle Scholar
  97. 97.
    Engelberg H: Heparin and the atherosclerotic process. Pharmacol Rev. 1984;36:91–110.PubMedGoogle Scholar
  98. 98.
    Castellot JJ, Rosenberg RD, Karnovsky MJ. Endothelium, heparin, and the regulation of vascular smooth muscle cell growth. In: Jaffee EA, ed. Biology of Endothelial Cells. Boston: Martinus Nijhoff; 1984: pp 118–128.CrossRefGoogle Scholar
  99. 99.
    Thilo-Körner DGS, Bödeker RH. Human smooth muscle cells of the aorta and vena cava: Different sensitivity to the inhibition of proliferation by heparin in vitro. Klin Wsch. 1985;63:702–705.CrossRefGoogle Scholar
  100. 100.
    Betz E, Hämrnerle H. Effects of Etofibrate and its metabolites on atheromas of rabbits and on smooth muscle cell cultures. Arzneim-Forsch/Drug Res. 1986;36:92–98.Google Scholar
  101. 101.
    Betz E, Hämrnerle H, Kling D, et al. The actions of Verapamil on the model of arteriosclerosis. In: Rosenthal J, ed. Calcium antagonists and Hypertension: Current Status. Amsterdam: Exc Med; 1986:83–96.Google Scholar
  102. 102.
    Reilly CF, Fritze LMS, Rosenberg RD. Inhibition of smooth muscle cell proliferation by heparin-like molecules. Med J Australia. 1986;144:HS10-HS15.Google Scholar
  103. 103.
    Castellot JJ, Choay J, Lormeau JC, et al. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells: II. Evidence for a pentasaccharide sequence that contains a 3–0-sulfate group. J Cell Biol. 1986; 102:1979–1984.PubMedCrossRefGoogle Scholar
  104. 104.
    Orekhov AN, Tertov VV, Kudryashov SA, et al. Primary culture of human aortic intima cells as a model for testing antiatherosclerotic drugs. Effects of cyclic AMP, prostaglandins, calcium antagonists, antioxidants, and lipid-lowering agents. Atherosclerosis. 1986;60:101–110.PubMedCrossRefGoogle Scholar
  105. 105.
    Orekhov AN, Tertov VV, Khashimov KA, et al. Evidence of antiatherosclerotic action of Verapamil from direct effects on arterial cells. Am J Cardiol. 1987;59:495–496.PubMedCrossRefGoogle Scholar
  106. 106.
    Thyberg J, Palmberg L. The calcium antagonist nisoldipine and the calmodulin antagonist W-7 syn-ergistically inhibit initiation of DNA synthesis in cultured arterial smooth muscle cells. Biol o t Cell. 1987;60:125–132.CrossRefGoogle Scholar
  107. 107.
    Orekhov AN, Ruda MY, Baldenkov GN, et al. Atherogenic effects of beta blocker on cells cultured from normal and atherosclerotic aorta. Am J Cardiol. 1988;61:1116–1117.PubMedCrossRefGoogle Scholar
  108. 108.
    Nomoto A, Mutho S, Hagihara H, et al. Smooth muscle cell migration induced by inflammatory cell products and its inhibition by a potent calcium antagonist, nilvadipine. Atherosclerosis. 1988;72:213–219.PubMedCrossRefGoogle Scholar
  109. 109.
    Herbert JM, Maffrand JP. Heparin interactions with cultured human vascular endothelial and smooth muscle cells: incidence on vascular smooth muscle cell proliferation. J Cell Physiol. 1989; 138:424–432.PubMedCrossRefGoogle Scholar
  110. 110.
    Roth D, Dartsch PC, Betz E. Wirkung von Flunarizin auf die Proliferation von Gefäßwandzellen des Menschen. In: Betz E, ed. Die Anwendung aktueller Methoden in der Arteriosklerose-Forschung. Tübingen: Selbstverlag Dtsch Ges Arterioskleroseforschung e.V.; 1989: pp 276–279.Google Scholar
  111. 111.
    Fallier P, Hämmerle H, Betz E. Transfilterkulturen als Modelle für Untersuchungen von Frühveränderungen bei der Atherogenese. In: Betz E, ed. Frühveränderungen bei der Atherogenese. Munich: Zuckerschwendt Verlag; 1987: pp 112–116.Google Scholar
  112. 112.
    Fallier-Becker P, Wolburg-Buchholz K, Betz E. Co-cultures of smooth muscle and endothelial cells from the arterial wall. Pflügers Arch. 1988;412 (suppl 1):R 84.Google Scholar
  113. 113.
    Fallier-Becker P, Wolburg-Buchholz K, Baur R, et al. Einflüsse von Adventita und Endothel in Explantatkulturen. In: Betz E, ed. Die Anwendung aktueller Methoden in der Arteriosklerose-Forschung. Tübingen: Selbstverlag der Dtsch Ges Arterioskleroseforschung 1989: pp 332–339.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Eberhard L. Betz

There are no affiliations available

Personalised recommendations