Regression of Atherosclerosis

  • Michael G. Hennerici


Several studies carried out on animal models indicate regression of experimental atherosclerosis after the return to a normal or hypocaloric diet, either alone or in combination with various drugs.1–6 However, pathoanatomic, epidemiologic, and clinical studies in man on this subject are not unanimous.7–10 Arguments in favor of regression of atherosclerosis in man are:
  1. 1.

    The capacity of arteries to adapt and to recover from previous lesions;

  2. 2.

    The inflammatory rather than degenerative nature of atherosclerosis;

  3. 3.

    The slow and variable course of the disease from its onset in early infancy to senescence;

  4. 4.

    The encouraging results of animal experiments and, recently, of plasmapheresis in homozygous and heterozygous patients with low-density lipoprotein (LDL) receptor abnormalities.



Carotid Plaque Familial Hypercholesterolaemia Fatty Streak Atherogenic Diet Internal Carotid Artery Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong ML, Warner ED, Connor WE. Regression of coronary atheromatosis in rhesus monkeys. Circ Res. 1970;27:59–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Vesselinovitch D, Wissler RW, Hughes R, et al. Reversal of advanced atherosclerosis in rhesus monkeys. Atherosclerosis. 1976;23:155. 155–161.CrossRefGoogle Scholar
  3. 3.
    Stary HC. Regression of atherosclerosis in primates. Virchows Arch A Path Anat. 1979;383:117–134.Google Scholar
  4. 4.
    Wagner WD, Saint-Clair RW, Clarkson TB. A study of atherosclerosis regression in macaca mulatta. Exptl Molec Pathol 1980;32:162–174.CrossRefGoogle Scholar
  5. 5.
    Wagner WD, St-Clair RW, Clarkson TB, Connor JR. A study of atherosclerosis regression in macaca mulatta. Am J Pathol 1980;100:633–650.PubMedGoogle Scholar
  6. 6.
    Malinow MR. Atherosclerosis: progression, regression and resolution. Am Heart J. 1984; 108: 1523–1537.PubMedCrossRefGoogle Scholar
  7. 7.
    Armstrong ML. Regression of atherosclerosis. Atherosclerosis Reviews. 1976; 1:137–141.Google Scholar
  8. 8.
    Wissler RW, Vesselinovitch D. Regression of atherosclerosis in experimental animals and man. Mod Concepts Cardiovasc Dis. 1977;46:27–32.PubMedGoogle Scholar
  9. 9.
    Malinow MR. Regression of atherosclerosis in humans. A new frontier. Postgrad Med. 1983;73: 232–235.PubMedGoogle Scholar
  10. 10.
    Brensike JF, Levy RI, Kelsy SF, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Tape II Coronary Intervention Study. Circulation. 1984;69:313–324.PubMedCrossRefGoogle Scholar
  11. 11.
    Adams CWM, Morgan RS. Regression of atheroma in the rabbit. Atherosclerosis. 1977;28:399–404.PubMedCrossRefGoogle Scholar
  12. 12.
    Okamoto R, Hatani M, Tsukitani M, et al. The effect of oxygen on the development of atherosclerosis in WHHL rabbits. Atherosclerosis. 1983;47:47–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Constantinides P. Overview of studies on regression of atherosclerosis. Artery. 1981;9:30–43.PubMedGoogle Scholar
  14. 14.
    Mathur KS, Kashyap SK, Kumar V. Correlation of the extent and severity of atherosclerosis in the coronary and cerebral arteries. Circulation. 1963; 27:929–934.PubMedCrossRefGoogle Scholar
  15. 15.
    Bullock BC, Moossy J. Cerebral infarction with atherosclerotic occlusion of the middle cerebral artery in a squirrel monkey (Saimiri sciureus) fed an atherogenic diet. J Neuropathol Exp Neurol. 1972;31:177–180.Google Scholar
  16. 16.
    Holme I, Enger SC, Helgeland A. Risk factors and raised atherosclerotic lesions in coronary and cerebral arteries. Statistical analysis from the Oslo study. Arteriosclerosis. 1981;1:250–256.PubMedCrossRefGoogle Scholar
  17. 17.
    Weber G, Fabbrini P, Resi L, et al. Ultrastructural aspects of cynomologous atherosclerotic carotid artery lesions on cholestyramine “regression” treatment. Appl Pathol 1986;45:225–232.Google Scholar
  18. 18.
    Brown MS, Ho YK, Goldstein JL. The cholesterol ester cycle in macrophage foam cells. J Biol Chem. 1980;255:9344–9352.PubMedGoogle Scholar
  19. 19.
    Brown MS, Kovanen PT, Goldstein JL. Regulation of plasma cholesterol by lipoprotein receptors. Science. 1981;212:628–635.PubMedCrossRefGoogle Scholar
  20. 20.
    Kottke BA. Lipid markers for atherosclerosis. Am J Cardiol 1986;57:11C-17C.PubMedCrossRefGoogle Scholar
  21. 21.
    Henry PD. Atherosclerosis, calcium, and calcium antagonists. Circulation. 1985;72:456–459.PubMedCrossRefGoogle Scholar
  22. 22.
    Parmley WW, Blumlein S, Sievers R. Modification of experimental atherosclerosis by calcium-channel blockers. Am J Cardiol. 1985;55:165B-171B.PubMedCrossRefGoogle Scholar
  23. 23.
    Willis AL, Smith DL. Therapeutic impact of eicos-anoids in atherosclerotic disease. Eicosanoids. 1989;2:69–72.PubMedGoogle Scholar
  24. 24.
    Schmitz-Hübner U, Thompson SG, Balleisen L, et al. Lack of association between haemostatic variables and the presence or extent of coronary atherosclerosis. Br Heart J. 1988;59:287–291.CrossRefGoogle Scholar
  25. 25.
    Vesselinovitch D. Animal models and the study of atherosclerosis. Arch Pathol Lab Med. 1988; 112: 1011–1017.PubMedGoogle Scholar
  26. 26.
    Bond MG, Insull W, Glagov S, et al. Clinical Diagnosis of Atherosclerosis. New York, NY: Springer-Verlag; 1983.CrossRefGoogle Scholar
  27. 27.
    Hennerici M, Rautenberg W, Trockel U, Kladetzky RG. Spontaneous progression and regression of small carotid atheroma. Lancet. 1985; 1: 1415–1419.PubMedCrossRefGoogle Scholar
  28. 28.
    Anitschkow NN, Chalatow S. Über experimentelle Cholesterinsteatose. Zentralhl Allg Path. 1913; 24:1–6.Google Scholar
  29. 29.
    Munro JM, van der Walt J, Munro CS, et al. An immunohistochemical analysis of human aortic fatty streaks. Hum Pathol. 1987;18:375–380.PubMedCrossRefGoogle Scholar
  30. 30.
    Wissler RW, Vesselinovitch D, Komatsu A, et al. The arterial wall and atherosclerosis in youth. Proceedings of the 8th International Symposium on Atherosclerosis, 1988; Siena: 265.Google Scholar
  31. 31.
    Ross R. Atherosclerosis: a problem of the biology of arterial wall cells and their interaction with blood components. Arteriosclerosis. 1981; 1:293–311.PubMedCrossRefGoogle Scholar
  32. 32.
    del Zoppo GJ, Harker L. Blood/vessel interaction in coronary disease. Hosp Practice. 1984; 13: 163–165, 169–177, 181–182.Google Scholar
  33. 33.
    Sterne J. The present state of knowledge on the mode of action of the antidiabetic diguanides. Metabolism. 1964;13:791–796.PubMedCrossRefGoogle Scholar
  34. 34.
    Horlick L, Katz LN. Retrogression of atherosclerotic lesions on cessation of cholesterol feeding in the chick. J Lab Clin Med. 1949;34:1427–1431.PubMedGoogle Scholar
  35. 35.
    Wagner WD, Clarkson TB. Effect of regression potential of atherosclerosis produced by intermittent continuous hypercholesterolemia. Atherosclerosis. 1977;27:369–381.PubMedCrossRefGoogle Scholar
  36. 36.
    Jokinen MP, Clarkson TB, Prichard RW. Recent advances in molecular pathology. Animal models in atherosclerosis research. Exp Mol Path. 1985; 42:1–28.CrossRefGoogle Scholar
  37. 37.
    Daoud AS, Jarmolych J, Augustyn JM, et al. Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol Lab Med. 1981;195:233–239.Google Scholar
  38. 38.
    Fisher M, Levine PH, Weiner BH. Omega-3 fatty acids and atherosclerosis. In: Hennerici M, Sitzer G, Weger H-D, eds. Carotid Artery Plaques. Basel: Karger; 1988:92–100.Google Scholar
  39. 39.
    Lee TH, Hoover RL, Williams JD, et al. Effects of dietary enrichment with eicosapentaenoic acid and docosahexaenoic acids on in-vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med. 1985;312:1217–1224.PubMedCrossRefGoogle Scholar
  40. 40.
    Hartung HP, Kladetzky RG, Melnik G, et al. Stimulation of the scavenger receptor on monocytes-macrophages evokes release of arachidonic acid metabolites and reduced oxygen species. Lab Invest. 1986;55:209–216.PubMedGoogle Scholar
  41. 41.
    Fisher M, Upchurch KS, Levine PH, et al. Effects of dietary fish oil supplementation on polymorphonuclear leukocyte inflammatory potential. Inflammation. 1986;10:387–392.PubMedCrossRefGoogle Scholar
  42. 42.
    Davis HR, Bridenstine RT, Vesselinovitch D, et al. Fish oil inhibits development of atherosclerosis in rhesus monkeys. Arteriosclerosis. 1987;7:441–449.PubMedCrossRefGoogle Scholar
  43. 43.
    Hadjiisky P, Bourdillon MC, Grosgogeat Y. Histoire naturelle de la regression de l’atherosclerose: des modeles animaux a l’homme. Arch Mal Coeur. 1988;81:1411–1417.PubMedGoogle Scholar
  44. 44.
    Hollander W, Kirkpatrick B, Paddock J, et al. Studies on the progression and regression of coronary and peripheral atherosclerosis in the cynomologous monkey. Exp Mol Pathol. 1979;30:55–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Hennerici M, Bürrig KF, Daffertshofer M. Flow pattern and structural changes at carotid bifurcation in hypertensive cynomologous monkeys. Hypertension. 1989;13:315–329.PubMedCrossRefGoogle Scholar
  46. 46.
    Saint-Clair RW. Atherosclerosis regression in animal models: current concepts of cellular and biochemical mechanisms. Prog Cardiovasc. Dis. 1983;26:109–112.CrossRefGoogle Scholar
  47. 47.
    Malinow MR, Blaton VW. Regression of atherosclerotic lesions. Arteriosclerosis 1984;4:292–295.PubMedCrossRefGoogle Scholar
  48. 48.
    Pick R, Glick G. Effects of propranolol, minoxidil and Clofibrate in cholesterol-induced atherosclerosis in stumptail macaques (macaca arctoides). Atherosclerosis. 1977; 27:71 - 77.PubMedCrossRefGoogle Scholar
  49. 49.
    Vesselinovitch D, Wissler RW. Correlation of types of induced lesions with regression of coronary atherosclerosis in two species of macaques. In: Noseda G, Fragiacomo C, Fumagalli R, et al., eds. Lipoproteins and Coronary Atherosclerosis. Amsterdam: Elsevier Publishers; 1982:401.Google Scholar
  50. 50.
    Vartiainen I, Kanerva K. Arteriosclerosis and war time. Ann Med Int Fenniae. 1947;36:748.Google Scholar
  51. 51.
    Wanscher O, Clemmesen J, Nielson A. Negative correlation between atherosclerosis and carcinoma. Br J Cancer. 1951;5:172–177.PubMedCrossRefGoogle Scholar
  52. 52.
    Strong JP, Solberg LA, Restrepo C. Atherosclerosis in persons with coronary heart disease. Lab Invest. 1968;18:527–531.PubMedGoogle Scholar
  53. 53.
    Malinow MR, Senner JW Arterial pathology in cancer patients suggests atherosclerosis regression. Med Hypotheses. 1983;11:353–357.PubMedCrossRefGoogle Scholar
  54. 54.
    Solberg LA, Strong JP. Risk factors and atherosclerotic lesions. Arteriosclerosis. 1983;3:187–198.PubMedCrossRefGoogle Scholar
  55. 55.
    Solberg LA, McGarry PA, Moossy J, et al. Severity of atherosclerosis in cerebral arteries, coronary arteries, and aortas. Ann NY Acad Sci. 1968; 149: 956–962.CrossRefGoogle Scholar
  56. 56.
    Weber G, Fabbrini P, Resi L, et al. An ultrastructural comparison of diet-induced atherosclerosis of arteries supplying the central nervous system in cynomologous and rhesus monkeys. Appl Pathol. 1983;1:121–138.PubMedGoogle Scholar
  57. 57.
    Malinow MR. Regression and resolution in atherosclerosis. In: Recent Advances in Arterial Disease: Atherosclerosis, Hypertension and Vasospasm. 1986:31–38.Google Scholar
  58. 58.
    Clarkson TB, Lehner ND, Wagner, WD, et al. A study of atherosclerosis regression in macaca mulatta. Exp Mol Pathol. 1979;30:360–385.PubMedCrossRefGoogle Scholar
  59. 59.
    Clarkson TB, Bond MG, Bullock BC, et al. A study of atherosclerosis regression in macaca mulatta. Exp Mol Pathol. 1981;34:345–368.PubMedCrossRefGoogle Scholar
  60. 60.
    Bond MG, Adams MR, Bullock BC. Complicating factors in evaluating coronary artery atherosclerosis. Artery. 1981;9:21–29.PubMedGoogle Scholar
  61. 61.
    Zarins CK, Weisenberg E, Kolettis G, et al. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg. 1988;7:386–394.PubMedGoogle Scholar
  62. 62.
    Stary HC, Eggen DA, Strong JP. The mechanisms of atherosclerosis regression. In: Schettler G, et al., eds. Atherosclerosis IV. New York, NY: Springer-Verlag; 1977. p 394.CrossRefGoogle Scholar
  63. 63.
    Hennerici M, Rautenberg W, Mohr S. Stroke risk from symptomless extracranial disease. Lancet. 1982;2:1180–1183.PubMedCrossRefGoogle Scholar
  64. 64.
    Chambers BR, Norris JW Outcome in patients with asymptomatic neck bruits. N Engl J Med. 1986;315:860–865.PubMedCrossRefGoogle Scholar
  65. 65.
    Hennerici M, Hülsbömer HB, Hefter H, et al. Natural history of asymptomatic extracranial arterial disease. Results of a long-term prospective study. Brain. 1987;110:777–791.PubMedCrossRefGoogle Scholar
  66. 66.
    Thompson GR, Lowenthal R, Myant NB. Plasma exchange in the management of homozygous familial hypercholesterolemia. Lancet. 1975; 1: 1208–1211.PubMedCrossRefGoogle Scholar
  67. 67.
    Eisenhauer T, Armstrong VW, Wieland H, et al. Selective removal of low density lipoproteins (LDL) by precipitation at low pH: first clinical application of the HELP system. Klin Wschr. 1987;65:161–168.PubMedCrossRefGoogle Scholar
  68. 68.
    Stary HC. What is the nature of coronary atherosclerotic lesions that have been shown to regress in experiments with nonhuman primates and by angiography in man? VASA. 1984;13:298–304.PubMedGoogle Scholar
  69. 69.
    Hennerici M, Kleophas W, Gries FA. Regression of carotid plaques during HELP therapy. In preparation.Google Scholar
  70. 70.
    Daoud AS, Fritz KE, Jarmolych J, et al. Roles of macrophages in regression of atherosclerosis. Ann NY Acad Sci. 1985;454:101–114.PubMedCrossRefGoogle Scholar
  71. 71.
    Yatsu FM. Atherosclerosis and stroke. In: Hen-nerici M, Sitzer G, Weger H-D, eds. Carotid Artery Plaques. Basel: Karger, 1988:p 10–25.Google Scholar
  72. 72.
    Watanabe T, Hirata M, Yoshikawa Y, et al. Role of macrophages in atherosclerosis. Lab Invest. 1985; 53:80–90.PubMedGoogle Scholar
  73. 73.
    Hartung HP, Hennerici M. Role of macrophages in atherosclerosis. In: Hennerici M, Sitzer G, Weger H-D, eds. Carotid Artery Plaques. Basel: Karger; 1988:p 47–63.Google Scholar
  74. 74.
    Yamamoto A, Hara H, Takaichi S, et al. Effect of probucol on macrophages, leading to regression of xanthomas and atheromatous vascular lesions. Am J Cardiol. 1988;62:31B-36B.PubMedCrossRefGoogle Scholar
  75. 75.
    Armstrong ML, Heistad DD, Marcus ML, et al. Hemodynamic sequelae of regression of experimental atherosclerosis. J Clin Invest. 1983;71:104–113.PubMedCrossRefGoogle Scholar
  76. 76.
    Williams JK, Armstrong ML, Heistad DD. Vasa vasorum in the atherosclerotic coronary arteries: responses to vasoactive stimuli and regression of atherosclerosis. Circulation Res. 1988;62:515–523.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith EB, Slater RS. Relationship between low density-lipoproteins in aortic intima and serum lipid levels. Lancet. 1972;1:463–469.PubMedCrossRefGoogle Scholar
  78. 78.
    Hort W, Lichtli H, Kalbfleisch H, Kohler F, et al. The size of human coronary arteries depending on the physiological and pathological growth of the heart, the age, the size of the supplying areas and degree of coronary sclerosis: a post-mortem study. Virchows Arch A. 1982;397:37–59.Google Scholar
  79. 79.
    Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371 - 1375.PubMedCrossRefGoogle Scholar
  80. 80.
    LoGerfo F. Discussion. J Vasc Surg. 1988;7:393–395.Google Scholar
  81. 81.
    Schmid-Schönbein H, Wurzinger LJ. Vortex transport phenomena of the carotid trifurcation: inter action between fluid dynamic transport phenomena and hemostatic reactions. In: Hennerici M, Sitzer G, Weger H-D, eds. Carotid Artery Plaques. Basel:Karger;1988:p 64–91.Google Scholar
  82. 82.
    Steinke W, Hennerici M. Three-dimensional ultrasound imaging of carotid artery plaques. J Cardi-ovasc Tech. 1989;8:15–17.Google Scholar
  83. 83.
    Detre KM, Kelsy SF, Passamani ER, et al. Reliability of assessing change with sequential coronary arteriography. Am Heart J. 1982;104:816–823.PubMedCrossRefGoogle Scholar
  84. 84.
    Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation. 1985;71:280–288.PubMedCrossRefGoogle Scholar
  85. 85.
    Waters D, Lesperance J. Regression of coronary atherosclerosis-angiographic perspective. Drugs. 1988;36 (suppl 3):37–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA. 1987;257:3233–3240.PubMedCrossRefGoogle Scholar
  87. 87.
    Clarkson TB, Bond MG, Bullock BC, et al. A study of atherosclerosis regression in Macaca mulatta. Exp Mol Pathol. 1984;41:96–118.PubMedCrossRefGoogle Scholar
  88. 88.
    Glueck CJ. Role of risk factor management in progression and regression of coronary and femoral artery atherosclerosis. Am J Cardiol. 1986;57: 35G-41G.PubMedCrossRefGoogle Scholar
  89. 89.
    Slater EE, MacDonald JS. Mechanism of action and biological profile of HMG CoA reductase inhibitors. Drugs. 1988;36 (suppl 3):72–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Waters D, Freedman D, Lesperance J, et al. Design features of a controlled clinical trial to assess the effect of a calcium entry blocker upon the progression of coronary artery disease. Contr Clin Trials. 1987;8:216–242.CrossRefGoogle Scholar
  91. 91.
    Buchwald H, Moore RB, Varco RL. Surgical treatment of hyperlipidemia. Circulation. 1974;49 (suppl 1):122.CrossRefGoogle Scholar
  92. 92.
    Buchwald H, Moore RB, Rucker RD, et al. Clinical angiographic regression of atherosclerosis after partial ileal bypass. Atherosclerosis. 1983;46:117–128.PubMedCrossRefGoogle Scholar
  93. 93.
    Erikson U, Helmius G, Hemmingsson A, et al. Repeat femoral arteriography in hyperlipidemic patients. Acta Radiol. 1988;29:303–309.PubMedGoogle Scholar
  94. 94.
    Schoop W. Progression und Regression der peripheren arteriellen Verschlusskrankheit. VASA. 1987;20 (suppl):62–66.Google Scholar
  95. 95.
    Thompson GR, Myant NB, Kilpatrick D, et al. Assessment of long-term plasma exchange for familial hypercholesterolaemia. Br Heart J. 1980; 43:680–688.PubMedCrossRefGoogle Scholar
  96. 96.
    Norris JW, Bornstein NM. Progression and regression of carotid stenosis. Stroke. 1986; 17:755–757.PubMedCrossRefGoogle Scholar
  97. 97.
    Hennerici M, Freund H-J. Evaluation of the efficacy of different ultrasound methods for the detection of extracranial arterial disease. J Clin Ultrasound. 1984;12:115–161.CrossRefGoogle Scholar
  98. 98.
    Reneman RS, van Merode T, Hick P, et al. Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of varying age. Circulation. 1985;71:500–509.PubMedCrossRefGoogle Scholar
  99. 99.
    Steinke W, Kloetzsch C, Hennerici M. Carotid artery disease assessed by Doppler color flow imaging. AJNR. 259–266.Google Scholar
  100. 100.
    Baker DW, Daigle RJ. Noninvasive ultrasonic flow-metry. In: Hwang NHC, Norman NA, eds. Cardiovascular Flow Dynamics and Measurements. Baltimore, MD: University Park Press; 1977: p 151–159.Google Scholar
  101. 101.
    Pignoli T, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–1406.PubMedCrossRefGoogle Scholar
  102. 102.
    Hennerici M, Reifschneider G, Trockel U, et al. Detection of early atherosclerotic lesions by duplex scanning of the carotid artery. J Clin Ultrasound. 1984;12:455–463.PubMedCrossRefGoogle Scholar
  103. 103.
    Ehringer H, Bockelmann L, Konecny U, et al. Verschlusskrankheit der extrakraniellen A. carotis: “Spontanverlauf” und frühe Phase nach Thromben-darteriektomie im bildgebenden Ultraschall. VASA. 1987;20(suppl):71–76.PubMedGoogle Scholar
  104. 104.
    Merritt CRB. Doppler color flow imaging. J Clin Ultrasound. 1986;15:591–599.CrossRefGoogle Scholar
  105. 105.
    Poli A, Paoletti R. Regression of the atherosclerotic lesion in man: the impact of non-invasive techniques. Inter Angio. 1987;6:327–329.Google Scholar
  106. 106.
    Hennerici M, Steinke W. Three-dimensional ultrasound imaging for the evaluation of progression and regression of carotid atherosclerosis. In: Hennerici M, Stear G, Weger H-D, eds. Carotid Artery Plaques. Basel: Karger; 1988:115–132.Google Scholar
  107. 107.
    Weber G, Bianciardi B, Toto P, et al. Some pathogenetic aspects of atherosclerotic lesions. Int Angio. 1987;6:37–43.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michael G. Hennerici

There are no affiliations available

Personalised recommendations