Skip to main content

Approximations and complex multiplication according to Ramanujan

  • Chapter

Abstract

This talk revolves around two focuses: complex multiplications (for elliptic curves and Abelian varieties) in connection with algebraic period relations, and (diophantine) approximations to numbers related to these periods. Our starting point is Ramanujan’s works [1], [2] on approximations to π via the theory of modular and hypergeometric functions. We describe in chapter 1 Ramanujan’s original quadratic period— quasiperiod relations for elliptic curves with complex multiplication and their applications to representations of fractions of π and other logarithms in terms of rapidly convergent nearly integral (hypergeometric) series. These representations serve as a basis of our investigation of diophantine approximations to π and other related numbers. In Chapter 2 we look at period relations for arbitrary CM-varieties following Shimura and Deligne. Our main interest lies with modular (Shimura) curves arising from arithmetic Fuchsian groups acting on H. From these we choose arithmetic triangular groups, where period relations can be expressed in the form of hypergeometric function identities.

This work was supported in part by the N.S.F., U.S. Air Force and O. C. R. E. A. E. program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ramanujan, Collected Papers, Cambridge, 1927, 23–39.

    MATH  Google Scholar 

  2. G.H. Hardy, Ramanujan, Cambridge, 1940.

    Google Scholar 

  3. G.N. Watson, Some singular moduli (I);(II);(III); (IV) ; Quart. J. Math. Oxford, 3 (1932), 81–98; 189–212; Proc. London Math. Soc. 40 (1936) , 83–142; Acta Arithmetica, 1 (1936), 284–323.

    Google Scholar 

  4. J.M. Borwein, P.B. Borwein, Pi and the AGM, Wiley, 1987.

    MATH  Google Scholar 

  5. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4 ed., Cambridge, 1927.

    MATH  Google Scholar 

  6. A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer, 1976.

    Book  MATH  Google Scholar 

  7. C.L. Siegel, Bestimmung der elliptischen Modulfunktionen durch eine Transformations gleichung, Abh. Math. Sem. Univ. Hamburg, 27 (1964), 32–38.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Weil, Sur les Périodes des Intégrales Abéliennes, Comm. Pure Appl. Math., 29 (1976), 813–819.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Masser, Elliptic Functions and Transcendence, Lecture Notes Math., v. 437, Springer, 1975.

    MATH  Google Scholar 

  10. S. Lefschetz, On certain numerical invariants of algebraic varieties with application to Abelian varieties, Trans. Amer. Math. Soc., 22 (1921) , 327–482.

    Article  MATH  MathSciNet  Google Scholar 

  11. E.T. Whittaker, On hyperlemniscate functions, a family of automorphic functions, J. London Math. Soc., 4 (1929) , 274–278.

    Article  MATH  MathSciNet  Google Scholar 

  12. D.V. Chudnovsky, G.V. Chudnovsky, Computer assisted number theory, Lecture Notes Math. , Springer, 1240, 1987, 1–68.

    Article  MathSciNet  Google Scholar 

  13. Ch. Hermite, Sur la Théorie des Équations Modulaires, C.R. Acad. Sci. Paris., 48 (1859) , 940–1079–1097; 49 (1859) , 16–110–141.

    Google Scholar 

  14. H.M. Stark, Class-numbers of complex quadratic fields, Lecture Notes Math., Springer, v. 320, 1973, 153–174.

    Google Scholar 

  15. D. Shanks, Dihedral quartic approximation and series for π, J. Number Theory, 14 (1982), 397–423.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, v. 1, Teubner, 1916.

    Google Scholar 

  17. A. Baker, Transcendental Number Theory, Cambridge, 1979.

    MATH  Google Scholar 

  18. H.M. Stark, A transcendence theorem for class number problems, I; II; Ann. Math. 94 (1971) , 153–173;

    Article  MATH  Google Scholar 

  19. H.M. Stark, A transcendence theorem for class number problems, I; II; Ann. Math. 96(1972), 174–209.

    Article  MATH  Google Scholar 

  20. C.L. Siegel, Zum Beweise des Starkschen Satzes, Invent. Math., 5 (1968) , 180–191.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Shimura, Automorphic forms and the periods of Abelian varieties, J. Math. Soc. Japan, 31 (1979) , 561–59.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Shimura, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math., 111 (1980) , 313–375.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Deligne, Valeurs de fonctions L et périodes d’integrales, Proc. Symp. Pure Math., v. 33, Part 2, Amer. Math. Soc., Providence, R.I., 313–346.

    Google Scholar 

  24. P. Deligne, Cycles de Hodge absolus et périodes des integrals des variétés abéliennes, Soc. Math. de France, Memoire, N 2, 1980, 23–33.

    Google Scholar 

  25. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton, University Press, 1971.

    Google Scholar 

  26. G. Shimura, Y. Taniyama, Complex Multiplication of Abelian Varieties and Its Applications to Number Theory, Publications of the, Mathematical Society of Japan, No 6, 1961.

    MATH  Google Scholar 

  27. G.V. Chudnovsky, Algebraic independence of values of exponential and elliptic functions. Proceedings of the International Congress of Mathematicians, Helsinki, 1979, Acad. Sci. Tennice, Helsinki, 1980, v. 1, 339–350.

    Google Scholar 

  28. B.H. Gross, N. Koblitz, Gauss sums and the p-adic 231C-function, Ann. of Math., 109 (1979) , 569–581.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Fricke, F. Klein, Vorlesungen über die Theorie der Automorphen Functionen, bd. 2, Tenbner, 1926.

    Google Scholar 

  30. R. Morris, On the automorphic functions of the group (0,3;l1,l2,l3), Trans. Amer. Math. Soc., 7 (1906), 425–448.

    MATH  MathSciNet  Google Scholar 

  31. K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan, 29 (1977) , 91–106.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. P. F. Swinnerton-Dyer, Arithmetic groups in Discrete Groups and Automorphic Functions, Academic Press, 1977, 377–401.

    Google Scholar 

  33. J. I. Hutchinson, On the automorphic functions of the group (0, 3; 2, 6, 6), Trans. Amer. Math. Soc ., 5 (1904), 447–460.

    MATH  MathSciNet  Google Scholar 

  34. D.V. Chudnovsky, G.V. Chudnovsky, Note on Eisenstein’s system of differential equations, in Classical and Quantum Models and Arithmetic Problems, M. Dekker, 1984, 99–116.

    Google Scholar 

  35. D.V. Chudnovsky, G.V. Chudnovsky, The use of computer algebra for diophantine and differential equations, in Computer Algebra as a Tool for Research in Mathematics and Physics, Proceeding of the International Conference, 1984, New York University, M. Dekker, 1987.

    Google Scholar 

  36. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, Lecture Notes Math., v. 1135, Springer, 1985, 9 – 50.

    Article  MathSciNet  Google Scholar 

  37. K. Mahler, Perfect systems, Compositio Math., 19 (1968), 95–166.

    MATH  MathSciNet  Google Scholar 

  38. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations, Lecture Notes Math., v. 1135, Springer, 1985, 51–100.

    Google Scholar 

  39. C.L. Siegel, Uber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1, 1929.

    Google Scholar 

  40. G.V. Chudnovsky, Contributions to the Theory of Transcendental Numbers, Mathematical Surveys and Monographs, v. 19, Amer. Math. Soc., Providence, R.I., 1984.

    Book  MATH  Google Scholar 

  41. G.V. Chudnovsky, Padé approximation and the Riemann monodromy problem, in Bifurcation Phenomena in Mathematical Physics and Related Topics, D. Reidel, Boston, 1980, 448–510.

    Google Scholar 

  42. G.V. Chudnovsky, Rational and Padé approximation to solutions of linear differential equations and the monodromy theory. Lecture Notes Physics, v. 126, Springer, 1980, 136–169.

    Article  MathSciNet  Google Scholar 

  43. G.V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I., J. Math. Pures et Appliques, Paris, 58 (1979), 445–476.

    MATH  MathSciNet  Google Scholar 

  44. G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math., 117 (1983), 325–382.

    Article  MATH  MathSciNet  Google Scholar 

  45. C.L. Siegel, Transcendental Numbers, Princeton University Press, 1949.

    MATH  Google Scholar 

  46. G.V. Chudnovsky, Rational approximations to linear forms of exponentials and binomials, Proc. Nat’1 Acad. Sci. U. S. A. , 80 (1983), 3138–3141.

    Article  MATH  MathSciNet  Google Scholar 

  47. D.V. Chudnovsky, G.V. Chudnovsky, A random walk in higher arithmetic, Adv. Appl. Math., 7 (1986), 101–122.

    MATH  MathSciNet  Google Scholar 

  48. H. Poincare, Sur les groupes des équations lineaires, Acta. Math., 4 (1884) 2 01–312 .

    Article  MathSciNet  Google Scholar 

  49. D.A. Hejhel, Monodromy groups and Poincar series, Bull. Amer. Math. Soc., 84 (1978) , 339–376.

    Article  MathSciNet  Google Scholar 

  50. E.T. Whittaker, On the connexion of algebraic functions with automorphic functions, Phil. Trans., 122 A(1898), 1–32.

    Google Scholar 

  51. R.A. Rankin, The differential equations associated with the uniformization of certain algebraic curves, Proc. Roy. Soc. Edinburgh, 65 (1958) 35–62.

    MATH  MathSciNet  Google Scholar 

  52. A. Schonhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, 7 (1971) , 281–292.

    Article  MathSciNet  Google Scholar 

  53. D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Proc. Natl. Acad. Sci. USA, 84 (1987), 1739–1743 .

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Schonhage, Equation solving in terms of computational complexity, Proc. International Congress of Mathematicians, Berkeley, 1986.

    Google Scholar 

  55. R.P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, in Analytic Computational Complexity, J.F. Traub, Ed., Academic Press, 1975, 151–176.

    Google Scholar 

  56. R.P. Brent, The complexity of multiple-precision arithmetic, in Complexity of Computational Problem Solving, R.S. Anderson and R.P. Brent, Eds. Univ. of Queensland Press, Brisbane, Australia, 1975, 126–165.

    Google Scholar 

  57. D.V. Chudnovsky, G.V. Chudnovsky, On expansions of algebraic functions in power and Puiseux series, I; II; J. of Complexity, 2 (1986), 271–294;

    Article  MATH  MathSciNet  Google Scholar 

  58. D.V. Chudnovsky, G.V. Chudnovsky, On expansions of algebraic functions in power and Puiseux series, I; II; J. of Complexity, 3 (1987), 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  59. O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1929.

    MATH  Google Scholar 

  60. D. Bini, V. Pan, Polynomial division and its computational complexity, J. of Complexity, 2 (1986), 179–203.

    Article  MATH  MathSciNet  Google Scholar 

  61. D. A. Hejhal, A classical approach to a well-known spectral correspondence on quaternion groups, Lecture Notes Math., v. 1135, Springer, 1985, 127–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chudnovsky, D.V., Chudnovsky, G.V. (2004). Approximations and complex multiplication according to Ramanujan. In: Pi: A Source Book. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4217-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4217-6_63

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1915-1

  • Online ISBN: 978-1-4757-4217-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics