Advertisement

Limit Process Expansions Applied to Ordinary Differential Equations

  • J. Kevorkian
  • J. D. Cole
Part of the Applied Mathematical Sciences book series (AMS, volume 34)

Abstract

In this chapter a series of simple examples are considered, some model and some physical, in order to demonstrate the application of various techniques concerning limit process expansions. In general we expect analytic dependence of the exact solution on the small parameter ε, but one of the main tasks in the various problems is to discover the nature of this dependence by working with suitable approximate differential equations. Another problem is to systematize as much as possible the procedures for discovering these expansions.

Keywords

Ordinary Differential Equation Asymptotic Expansion Relaxation Oscillation Linear Oscillator Outer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.3.1
    J. Grassman and B. J. Matkowsky, A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points, S.I.A.M. Journal on Applied Mathematics, 32, No. 3, May 1977, pp. 588–597.CrossRefGoogle Scholar
  2. 2.3.2
    H. C. Corben and P. Stehle, Classical Mechanics, John Wiley and Sons, Inc., New York, 1960.Google Scholar
  3. 2.4.1
    A. Erdelyi, Singular perturbation, Bull Amer. Math. Soc. 68 (1962), 420–424.MathSciNetMATHCrossRefGoogle Scholar
  4. 2.4.2
    E. A. Coddington and N. Levinson, A boundary value problem for a nonlinear differential equation with a small parameter, Proc. Amer. Math. Soc. 3 (1952), 73–81.MathSciNetMATHCrossRefGoogle Scholar
  5. 2.4.3
    W. Wasow, Singular perturbations of boundary value problems for nonlinear differential equations of the second order. Comm. Pure and Applied Math. 9 (1956), 93–113.MathSciNetMATHCrossRefGoogle Scholar
  6. 2.4.4
    A. Erdelyi, On a nonlinear boundary value problem involving a small parameter, J. Aust. Math. Soc. II, Part 4 (1962), 425–439.MathSciNetCrossRefGoogle Scholar
  7. 2.4.5
    J. J. Shepherd, Asymptotic solution of a nonlinear singular perturbation problem. S.I.A.M. J. on Appl. Math. 35 (1978) 176–186.MathSciNetMATHCrossRefGoogle Scholar
  8. 2.6.1
    A. A. Dorodnitsyn, Asymptotic Solution of the van der Pol Equations, Prik. Mat. i Mekh, I1 (1947), 313–328 (in Russian).Google Scholar
  9. 2.6.2
    M. Urabe, Numerical Study of Periodic Solutions of the van der Pol Equations, in Proc. Int. Symp. on Non-Linear Differential Equations and Non-Linear Mechanics, 184–195. Edited by J. P. LaSalle and S. Lefschetz. New York. Academic Press, 1963.Google Scholar
  10. 2.7.1
    H. C. Corben and P. Stehle, Classical Mechanics, John Wiley and Sons, Inc., New York, 1960.Google Scholar
  11. 2.7.2
    P. A. Lagerstrom and J. Kevorkian, Matched conic approximation to the two fixed force-center problem, The Astronomical Journal 68, No. 2, March 1963, pp. 84–92.CrossRefGoogle Scholar
  12. 2.7.3
    P. A. Lagerstrom and J. Kevorkian, Earth-to-moon trajectories in the restricted three-body problem, Journal de Mécanique 2, No. 2, June 1963, pp. 189–218.MathSciNetGoogle Scholar
  13. 2.7.4
    P. A. Lagerstrom and J. Kevorkian, Nonplanar earth-to-moon trajectories, AIAA Journal4, No. 1, January 1966, pp. 149–152.Google Scholar
  14. 2.7.5
    J. V. Breakwell and L. M. Perko, Matched asymptotic expansions, patched conics, and the computation of interplanetary trajectories, Methods in Astrodynamics and Celestial Mechanics 17, eds. R. L. Duncombe and V. G. Szebehely, pp. 159–182, 1966.Google Scholar
  15. 2.7.6
    P. A. Lagerstrom, Méthodes asymptotiques pour l’étude des équations de Navier—Stokes, Lecture notes, Institut Henri Poincaré, Paris, 1961. Translated by T. J. Tyson, California Institute of Technology, Pasadena, California, 1965.Google Scholar
  16. 2.7.7
    D. S. Cohen, A. Fokas, and P. A. Lagerstrom, Proof of some asymptotic results for a model equation for low Reynolds number flow, S.LA.M. J. on Appl. Math. 35 (1978), 187–207.MathSciNetMATHCrossRefGoogle Scholar
  17. 2.7.8
    A. D. MacGillivray, On a model equation of Lagerstrom, S.I.A.M. J. on Appl. Math. 34 (1978), 804 812.MathSciNetGoogle Scholar
  18. 2.7.9
    W. B. Bush, On the Lagerstrom mathematical model for viscous flow at low Reynolds number, S.I.A.M. J. on Appl. Math. 20 (1971), 279–287.MathSciNetMATHCrossRefGoogle Scholar
  19. 2.8.1
    T. von Karman, and M. Biot, Mathematical Methods in Engineering, McGraw-Hill Book Co., New York, 1940.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. Kevorkian
    • 1
  • J. D. Cole
    • 2
  1. 1.Applied Mathematics ProgramUniversity of WashingtonSeattleUSA
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations