Internal Dosimetry in Pediatric Nuclear Medicine

  • Michael G. Stabin


The science of internal dosimetry is a specialty within the general field of health physics. A working definition of health physics might be “the protection of people and their environment from the harmful effects of radiation while allowing its beneficial applications.” With any application involving the use of ionizing radiation, the risks of its use must be balanced against its benefits. With medical uses of radiation, the benefits are immediately obvious and are directly received by the person exposed to the risk. This makes the balancing process considerably easier than, for example, the use of nuclear power, where a small number of people incur a risk so a broad region can receive a benefit. This balance, however, cannot be evaluated without some quantification of the risks. Internal dosimetry calculations provide estimates of the amount of radiation that is absorbed by different organs or organ systems.


Radiation Dose Large Intestine Bone Surface Dose Estimate Assumed Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold R, Subramanian G, McAfee J et al. Comparison of 99mTc complexes for renal imaging. J Nucl Med 1975;16:357–367PubMedGoogle Scholar
  2. 2.
    Atkins H, Cloutier R, Lathrop K et al. MIRD dose estimate report no. 3: radiation absorbed dose estimates for technetium-99m sulfur colloid in various liver conditions. J Nucl Med 1975;16:108A-108BGoogle Scholar
  3. 3.
    Atkins H, Robertson J, Croft B et al. MIRD dose estimate report no. 9: radiation absorbed dose estimates for radioxenons in lung imaging. J Nucl Med 1980; 21:459–465PubMedGoogle Scholar
  4. 4.
    Atkins H, Thomas S, Buddemeyer U, Chervu L. MIRD dose estimate report no. 14: radiation absorbed dose from technetium-99m-labeled red blood cells. J Nucl Med 1990;31:378–380PubMedGoogle Scholar
  5. 5.
    Bell E, Subramanian G, Blair R, McAfee J. Bone scanning in pediatrics. In: Pediatric Nuclear Medicine. Philadelphia: Saunders, 1974:84–94Google Scholar
  6. 6.
    Berman M, Braverman L, Burke J et al. MIRD dose estimate report no. 5: radiation absorbed dose estimates for I-123, I-124,I-125,I-126,1–130,1–131, and 1–132 as sodium iodide. J Nucl Med 1975; 16: 857–860Google Scholar
  7. 7.
    Blau M, Wicks R, Thomas S, Lathrop K. MIRD dose estimate report no. 10: radiation absorbed dose estimates for albumin microspheres labeled with tech-netium-99m. J Nucl Med 1982;23:915–917PubMedGoogle Scholar
  8. 8.
    Blaufox M, Gruskin B, Sandler P, et al. Detection of ureteral-vesical reflux in children with 99mTc -pertechnetate. J Nucl Med 1970;11:622–623Google Scholar
  9. 9.
    Castle V, Shulkin B, Coates G, Andrew M. The use of indium-111 oxine platelet scintigraphy and survival studies in pediatric patients with thrombocytopenia. J NuclMed 1989;30:1819–1824Google Scholar
  10. 10.
    Cloutier R, Watson E, Hayes R et al. MIRD dose estimate report no. 2: radiation absorbed dose estimates for gallium-66-, gallium-67-, gallium-68- and galliums-citrate. J Nucl Med 1973;14:755–756Google Scholar
  11. 11.
    Coates G, O’Brodovich H. Extrapulmonary radioactivity in lung permeability measurements. J Nucl Med 1987;28:903–906PubMedGoogle Scholar
  12. 12.
    Coenegracht J, Oei T, van Breda Vriesman R. The influence of bilirubin, alcohol, and certain drugs on the kinetics of 99mTc -diethyl IDA (EHIDA) in humans. Eur J Nucl Med 1983;8:140–144CrossRefPubMedGoogle Scholar
  13. 13.
    Cristy M, Eckerman K. Specific Absorbed Fractions of Energy at Various Ages from Internal Photons Sources. ORNL/TM-8381 V1-V7. Oak Ridge, TN: Oak Ridge National Laboratory, 1987Google Scholar
  14. 14.
    Datz F. The role of radionuclide studies in esophageal disease. J Nucl Med 1984;25:1040–1045PubMedGoogle Scholar
  15. 15.
    Dyrbye M, Brendstrup L, Carlsen N. Micturition cystourethrography using x-ray or scintigraphy in children with reflux. Eur J Nucl Med 1983;8:A14Google Scholar
  16. 16..
    Ellett W, Humes R. MIRD pamphlet no. 8: absorbed fractions for small volumes containing photon-emitting radioactivity. J Nucl Med 1972;7(suppl 6)Google Scholar
  17. 17.
    Erlich C, Papanicolaou N, Treves T et al. Splenic scintigraphy using Tc-99m-labeled heat-denatured red blood cells in pediatric patients: concise communication. J Nucl Med 1982;23:209–213Google Scholar
  18. 18.
    Evans I, Hambleton G, Mann N, Brown J. The distribution of lung damage in children with cystic fibrosis and its relationship to colonization with Pseudomonas aeruginosa. Eur J Nucl Med 1987;12: 620–622CrossRefPubMedGoogle Scholar
  19. 19.
    Frietas J, Swanson D, Gross M, Sisson J. Iodine-131: optimal therapy for hyperthyroidism in children and adolescents? J Nucl Med 1979;20:847–850Google Scholar
  20. 20.
    Gainey M, Siegel J, Smergel E, Jara B. Indium-111-labeled white blood cells: dosimetry in children. J NuclMed 1988;29:689–694Google Scholar
  21. 21.
    Gelbard A, Benua R, Laughlin J et al. Quantitative scanning of osteogenic sarcoma with nitrogen-13-labeled L-glutamate. J Nucl Med 1979;20:782–784PubMedGoogle Scholar
  22. 22.
    Gelfand M, Silberstein E, Cox J. Diagnosis of Meckel’s diverticulum by scintigraphy: clinical and pathological correlation. J Nucl Med 1976; 17:553Google Scholar
  23. 23.
    Goodwin D, Finston R, Smith SI. The distribution and dosimetry of In-111l labeled leukocytes and platelets in humans. In: Proceedings, Third International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1981Google Scholar
  24. 24.
    Guillet J, Basse-Cathalinat B, Christophe E et al. Routine studies of swallowed radionuclide transit in paediatrics: experience with 400 patients. Eur J Nucl Med 1984;9:86–90CrossRefPubMedGoogle Scholar
  25. 25.
    Gupta S et al. Testicular-scrotal content of 201T1 and 67Ga after intravenous administration. Int J Nucl Med Biol 1981;8:211–213CrossRefPubMedGoogle Scholar
  26. 26.
    Ham H, Piepsz A, Georges B et al. Quantitation of esophageal transit by means of 81mKr. Eur J Nucl Med 1984;9:362–365CrossRefPubMedGoogle Scholar
  27. 27.
    Handmaker H, O’Mara R. Gallium imaging in pediatrics. JNuclMed 1975;16:533Google Scholar
  28. 28.
    Harcke H. Jr. Bone imaging in infants and children: a review. J Nucl Med 1978;19:324–329PubMedGoogle Scholar
  29. 29.
    Hattner R, Maltz H, Holliday M. Differentiation of reversible ischemia from end-stage renal failure in nephrotic children with 131I-hippurate dynamic scintigraphy. J Nucl Med 1977; 18:438–440PubMedGoogle Scholar
  30. 30.
    Hogg J, Williams J, Richardson J et al. Age as a factor in the distribution of lower airway conductance and in the pathologic anatomy of obstructive lung disease. N Engl J Med 1970;282:1283–1287CrossRefPubMedGoogle Scholar
  31. 31.
    International Commission of Radiation Units and Measurements, Radiation Quantities and Units, ICRU 33. International Commission on Radiation Units and Measurements, 1980 Bethesda, MD.Google Scholar
  32. 32.
    International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30. New York: Pergamon Press, 1979Google Scholar
  33. 3.
    International Commission on Radiological Protection. Protection of the Patient in Nuclear Medicine. ICRP Publication 52. New York: Pergamon Press, 1987Google Scholar
  34. 34.
    International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. New York: Pergamon Press, 1988Google Scholar
  35. 35.
    International Commission on Radiological Protection. Radionuclide Transformations: Energy and Intensity of Emissions. New York: Pergamon Press, 1983Google Scholar
  36. 36.
    International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. New York: Pergamon Press, 1977Google Scholar
  37. 37.
    International Commission on Radiological Protection. Report of the Task Group on Reference Man. ICRP Publication 23. New York: Pergamon Press, 1975Google Scholar
  38. 38.
    Jacobsson L, Mattsson S, Johansson L et al. Biokinetics and dosimetry of 131I-metaiodobenzylguanidine (MIBG). In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1985Google Scholar
  39. 39.
    Jaw T, Wu C-C, Ho Y-H et al. Diagnosis of obstructive jaundice in infants: Tc-99m DISIDAin duodenal juice. J Nucl Med 1984;25:360–363PubMedGoogle Scholar
  40. 40.
    Jeandot R, Lambert B, Brendel A et al. Lung ventilation and perfusion scintigraphy in the follow up of repaired congenital diaphragmatic hernia. Eur J Nucl Med 1989;15:591–596CrossRefPubMedGoogle Scholar
  41. 41.
    Kilburn E, Gilday D, Ash J. Meckel’s diverticula-multiple view imaging. J Nucl Med 1976;25: 360–363Google Scholar
  42. 42.
    Knapp W, Helus F, Ostertag H et al. N-13 L-gluta-mate uptake in malignancy: its relationship to blood flow. J Nucl Med 1982;25:989–997Google Scholar
  43. 43.
    Krahwinklel W, Herzog H, Feinendegen L. Pharmacokinetics of thallium-201 in normal individuals after routine myocardial scintigraphy. J Nucl Med 1988;29:1582–1586Google Scholar
  44. 44.
    Lashford L, Moyes J, Ott R et al. The biodistribution and pharmacokinetics of meta-iodobenzylguanidine in childhood neuroblastoma. Eur J Nucl Med 1988; 13:574–577CrossRefPubMedGoogle Scholar
  45. 45.
    Lathrop K, Atkins H, Berman M et al. MIRD dose estimate report no. 8: radiation absorbed dose estimates for technetium-99m as sodium pertechnetate. J Nucl Med 1976;17:74–77Google Scholar
  46. 46.
    Lee W, Mpanias P, Wimmer R et al. Use of 1–123 in early radioiodide uptake and its suppression in children and adolescents with hyperthyroidism. J Nucl Med 1978;19:985–993PubMedGoogle Scholar
  47. 47.
    Lee PS, Gerrity TR, Hass FJ, Lourenco RV. A model for tracheobronchial clearance of inhaled particles in man and comparison with data. IEEE Trans Biomed Eng. 1979;26(ll):624–630CrossRefPubMedGoogle Scholar
  48. 48.
    Lindmo T, Skretting A, Nakken K. An examination of different mathematical models for renal function as measured by 131I-hippuran renography. Med Phys 1974;1:193–197CrossRefPubMedGoogle Scholar
  49. 49.
    Loevinger R, Budinger T, Watson E. MIRD Primer for Absorbed Dose Calculations. New York: Society of Nuclear Medicine, 1988Google Scholar
  50. 50.
    Marcus C, Kuperus J. Pediatric renal iodine-123 orthoiodohippurate dosimetry. J Nucl Med 1985; 26:1211–1214PubMedGoogle Scholar
  51. 51.
    Marcus C, Stabin M, Watson E. Pediatric radiation dose from [mIn]leukocytes. J Nucl Med 1986; 27:1220–1221PubMedGoogle Scholar
  52. 52.
    Marcus C, Stabin M, Watson E et al. Dosimetry of leukocytes labeled with Tc-99m-albumin colloid. Nucl Med Commun 1988;9:249–254CrossRefPubMedGoogle Scholar
  53. 53.
    Miller J. Technetium-99m-labeled red blood cells in the evaluation of hemangiomas of the liver in infants and children. J Nucl Med 1987;28:1412–1418PubMedGoogle Scholar
  54. 54.
    Moyes J, Babich J, Carter R et al. Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med 1989;30:474–480PubMedGoogle Scholar
  55. 55.
    Papanicolaou N, Treves S. Pulmonary scintigraphy in pediatrics. Semin Nucl Med 1980;10:259–285CrossRefPubMedGoogle Scholar
  56. 56.
    Piepsz A, Ham H, Struyven J et al. Simultaneous determination of the separate glomerular filtration rate and the intrarenal transit times by means of the Tc-99m-DTPA complex: validation and results in pediatric urology. J Nucl Med 1978;19:699Google Scholar
  57. 57.
    Poston J. Application of the effective dose equivalent to nuclear medicine patients. J Nucl Med 1993; 34:714–716PubMedGoogle Scholar
  58. 58.
    Poston J, Aissi A, Hui T, Jimba B. A preliminary model of the circulating blood for use in radiation dose calculations. In Schlafke-Stelson A, Watson E (eds): Fourth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1985: 574–586Google Scholar
  59. 59.
    Powell G, Schuchard R, Reft C, Harper P. Radiation absorbed dose to tracheal mucosa from inhaled oxygen-15-labeled carbon dioxide. Ann Neurol 1984; 15:S107-S109CrossRefPubMedGoogle Scholar
  60. 60.
    Powsner E, Raeside D. Diagnostic Nuclear Medicine. Orlando, FL: Grune & Stratton, 1971:184Google Scholar
  61. 61.
    Prince J, Zu’bi S, Haag B. Thyroid imaging with iodine-125 and technetium-99m. Eur J Nucl Med 1979;4:37–41PubMedGoogle Scholar
  62. 62.
    Reiman R, Benua R, Gelbard A et al. Imaging of brain tumors after administration of 1-(N-13) glutamate: concise communication. J Nucl Med 1982; 23:682–687PubMedGoogle Scholar
  63. 63.
    Rosen P, Kuruc A, Treves S. The determination of relative renal function in a pediatric population using Tc-99m DTPA and Tc-99m DMSA. J Nucl Med 1985;26(5):P10Google Scholar
  64. 64.
    Sinzinger H, Schroth B, Silhan I et al. Experience with radioisotopic vesico-ureteral reflux measurements in 250 children. Eur J Nucl Med 1983;8 (5):A15.Google Scholar
  65. 65.
    Soundy R, Tyrrell D, Pickett R, Stabin M. The radiation dosimetry of 99mTc -exametazime. Nucl Med Commun 1990;11:791–799CrossRefPubMedGoogle Scholar
  66. 66..
    Stabin M, Hach A. Radiation dosimetry and safety. In Gilday D, Hahn K (eds): Paediatrics. Stuttgart: Gustav Fischer Verlag, 1994 (in press)Google Scholar
  67. 67.
    Stabin M, Taylor A Jr, Conway J. Radiation dosimetry for Tc-99m MAG-3 in adults and children. In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1992Google Scholar
  68. 68.
    Stabin M, Taylor A Jr, Eshima D, Wooten W. Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131 OIH based on human biodistribution studies. J Nucl Med 1992;33:33–40PubMedGoogle Scholar
  69. 69.
    Thakur M, Seifert C, Madsen M et al. Neutrophil labeling: problems and pitfalls. Semin Nucl Med 1984;14:107–117CrossRefPubMedGoogle Scholar
  70. 70.
    Thomas S, Atkins H, McAfee J et al. MIRD dose estimate report no. 12: radiation absorbed dose for technetium-99m diethylenetriaminepentaacetic acid. J Nucl Med 1984;25:503–505PubMedGoogle Scholar
  71. 71.
    Vestergren E, Jacobsson L, Mattsson S et al. Biokinetics and dosimetry of Tc-99m HMPAO in children. In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1992Google Scholar
  72. 72.
    Weber D, Eckerman K, Dillman LT, Ryman J.Google Scholar
  73. MIRD: Radionuclide Data and Decay Schemes. New York: Society of Nuclear Medicine, 1989Google Scholar
  74. 73.
    Weber D, Makler PT Jr, Watson E et al. MIRD dose estimate report no. 13: radiation absorbed dose from technetium-99m-labeled bone imaging agents. J Nucl Med 1989;30:1117–1122PubMedGoogle Scholar
  75. 74.
    Weiblen B, Forstrom L, McCullough J. Studies of the kinetics of indium-lll-labeled granulocytes. J Lab Clin Med 1979;94:246–255PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael G. Stabin

There are no affiliations available

Personalised recommendations