Liver and Spleen

  • S. T. Treves
  • A. G. Jones
  • J. Markisz


Hepatobiliary scintigraphy and reticuloendothelial system (RES) scintigraphy are the most common nuclear medicine techniques for imaging of liver. Hepatobiliary scintigraphy employs intravenously injected radiopharmaceuticals that are rapidly taken up by the parenchymal cells of the liver and eliminated though the biliary system into the intestine. RES scintigraphy employs technetium 99m (99mTc)-sulfur colloid, which permits static imaging—planar scintigraphy and single photon emission computed tomography (SPECT) of functional hepatic parenchyma by its localization in cells of the RES. It permits evaluation of size, position, displacement, and replacement of functional hepatic and splenic tissue. At present, hepatobiliary scintigraphy is used in pediatric practice more frequently than static RES scintigraphy. Ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) have largely replaced RES scintigraphy for the morphologic evaluation of the liver.


Single Photon Emission Compute Tomography Biliary Atresia Choledochal Cyst Focal Nodular Hyperplasia Accessory Spleen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmadi A, Faber LP, Milloy F, Jensik RJ. Intrathoracic splenosis. J Thorac Cardiovasc Surg 1968;55:667–681Google Scholar
  2. 2.
    Albrecht H. Ein Fall von sehr Zahlreichen uber ganze Peritoneum versprentgen nebenmilzen. Beitr PatholAnat 1918;20:513–527Google Scholar
  3. 3.
    Atkins HL, Richards P, Schiffer L. Scanning of the liver, spleen, and bone marrow with colloidal Tc-99m. NuclAppl 1966;2:27Google Scholar
  4. 4.
    Atkinson GO, Kodroff M, Sones PJ, Gay BB. Focal nodular hyperplasia of the liver in children: a report of three new cases. Radiology 1980;137:171–174PubMedGoogle Scholar
  5. 5.
    Ayala LA, Williams LF, Widrich WL. Occult rupture of the spleen. Ann Surg 1974; 179:472–478PubMedCrossRefGoogle Scholar
  6. 6.
    Benjamin CI, Engrav LH, Perry JF. Delayed rupture or delayed diagnosis of rupture of the spleen. Surg Gynecol Obstet 1976;142:171–172PubMedGoogle Scholar
  7. 7.
    Bethel CAI, Touloukian RJ, Seashore JH, Rosenfield NS. Outcome of nonoperative management of splenic injury with nuclear scanning. Am J Dis Child 1992;146:198–200PubMedGoogle Scholar
  8. 8.
    Bobba VVR, Krishnamurthy GT, Kingston E, et al. Comparison of biokinetics and biliary imaging parameters of four Tc-99m iminodiacetic acid derivatives in normal subjects. Clin Nucl Med 1983;8:70–75PubMedCrossRefGoogle Scholar
  9. 9.
    Broker F, Fellows K, Treves S. Wandering spleen in three children. Pediatr Radiol 1978;6:211–214PubMedCrossRefGoogle Scholar
  10. 10.
    Broker FH, Khettry J, Filler RM, Treves S. Splenic torsion and accessory spleen: a scintigraphic demonstration. J Pediatr Surg 1975; 10:913–917PubMedCrossRefGoogle Scholar
  11. 11.
    Brown JJ, Sumner TE, Crowe JE, Shaffner L. Preoperative diagnosis of splenic abscess by ultrasonography and radionuclide scanning. South Med J 1979;72:575–577PubMedCrossRefGoogle Scholar
  12. 12.
    Buchbinder JH, Lipkoff CJ. Splenosis: multiple peritoneal splenic implants following abdominal injury. Surgery 1939;6:927–934Google Scholar
  13. 13.
    Burns D, Marzilli L, Sowa D, Baum D, Wagner HN. Relationship between molecular structure and biliary excretion of Tc-99m HIDA and HIDA analogs [abstract]. J Nucl Med 1977;18:624Google Scholar
  14. 14.
    Burns HD, Sowa DT, Marzilli LG. Improved synthesis of N-(2,6-dimethyl-phenyl-carbamoyl-methyl) iminodiacetic acid and analogs. J Pharm Sci 1978;67:1434–1436PubMedCrossRefGoogle Scholar
  15. 15.
    Burns HD, Sowa DT, Worley P, Vaum R, Marzilli LG. Electrophoretic determination of charge on carrier-free 99mTc -labeled complexes. J Pharm Sei 1981;70:436–439CrossRefGoogle Scholar
  16. 16.
    Burns HD, Worley P, Wagner HN, Marzilli LG, Risch V. Design of technetium radiopharmaceuticals. In Heindel ND, Burns HD, Brady LW, (eds): The Chemistry of Radiopharmaceuticals. New York: Masson, 1978Google Scholar
  17. 17.
    Caroli J. Diseases of intrahepatic bile ducts. Isr J Med Sci 1968;4:21–35PubMedGoogle Scholar
  18. 18.
    Caroli J, Soupault R, Kossakowski J, Plocker L, Paradowska M. La dilatation polykystique congenitale des voies biliaires intrahepatiques: essai de classification. Semin Hop Paris 1958;34:488–495Google Scholar
  19. 19.
    Chaberek S, Martell AE. Stability of metal chelates. I. Iminodiacetic and iminodipropionic acids. J Am ChemSoc 1952;74:5052–5056CrossRefGoogle Scholar
  20. 20.
    Chandra RS. Biliary atresia and other structural anomalies in the congenital polysplenia syndrome. J Pediatr 1974;85:649–655PubMedCrossRefGoogle Scholar
  21. 21.
    Chervu LR, Joseph JA, Chun SB, et al. Evaluation of six new 99mTc -IDA agents for hepatobiliary imaging. Eur J Nucl Med 1988;14:441–445PubMedCrossRefGoogle Scholar
  22. 22.
    Chervu LR, Nunn AD, Loberg MD. Radiopharmaceuticals for hepatobiliary imaging. Semin Nucl Med 1982;12:5–17PubMedCrossRefGoogle Scholar
  23. 23.
    Chiotellis E, Varvarigou A. Tc-99m labelled N-sub-stituted carbamoyl iminodiacetates: relationship between structure and biodistribution. Int J Nucl Med Biol 1980;7:1–7PubMedCrossRefGoogle Scholar
  24. 24.
    Costello CE, Brodack JW, Jones AG, et al. The investigation of radiopharmaceutical components by fast atom bombardment mass spectrometry: the identification of Tc-HIDA and the epimers of Tc-CO2DADS. J Nucl Med 1983;24:353–355PubMedGoogle Scholar
  25. 25.
    Crystal RF, Fink RL. Acute acalculous cholecystitis in childhood. Clin Pediatr 1971:10:423–426CrossRefGoogle Scholar
  26. 26.
    Deland FH, North WA. Relationship between liver size and body size. Radiology 1968;91:1195–1198PubMedGoogle Scholar
  27. 27.
    Dhawan VM, Spencer RP, Pearson HA, Sziklas JJ. Functional splenia in the absence of circulating Howell-Jolly bodies. Clin Nucl Med 1977; 2:395–396CrossRefGoogle Scholar
  28. 28.
    Dhawan VM, Spencer RP, Sziklas JJ. Reversible functional asplenia in chronic aggressive hepatitis. J Nucl Med 1979;20:34–36PubMedGoogle Scholar
  29. 29.
    Dickinson SJ, Corley G, and Santulli TV. Acute cholecystitis as a sequel of scarlet fever. Am J Dis Child 1971;121:331–333PubMedGoogle Scholar
  30. 30.
    Douglas GJ, Simpson JS. The conservative management of splenic trauma. J Pediatr Surg 1971; 6:565–570PubMedCrossRefGoogle Scholar
  31. 31.
    Dudczak R, Kletter K, Angelberger P, Frischauf H. Comparison of two different biliary agents in healthy subjects and in patients with liver disease. Eur J Nucl Med 1979;4:365–368PubMedCrossRefGoogle Scholar
  32. 32.
    Eckelman W, Richards P. Instant 99mTc -DTPA. J NuclMed 1970;11:761Google Scholar
  33. 33.
    Ehrlich CP, Papanicolaou N, Treves S, Hurwitz RA, Richards P. Splenic scintigraphy using Tc-99m labelled heat denatured red blood cells in pediatric patients. J Nucl Med 1982;23:209–213PubMedGoogle Scholar
  34. 34.
    Ehrlich, CP, Treves, ST, Unpublished data, 1981Google Scholar
  35. 35.
    Eraklis AJ, Filler RM. Splenectomy in childhood: a review of 1413 cases. J Pediatr Surg 1972; 7:382–388PubMedCrossRefGoogle Scholar
  36. 36.
    Eraklis AJ, Kevy SV, Diamond LK, Gross RE. Hazard of overwhelming infection after splenectomy in childhood. N Engl J Med 1967; 276:1225–1229PubMedCrossRefGoogle Scholar
  37. 37.
    Fischer KC, Eraklis A, Rosello P, Treves ST. Scintigraphy in the followup of pediatric splenic trauma. J Nucl Med 1978;19:3–9PubMedGoogle Scholar
  38. 38.
    Fischer KC, Shapiro S, Treves S. Visualization of the spleen with a bone-seeking radionuclide in a child with sickle-cell anemia. Radiology 1977; 122:398PubMedGoogle Scholar
  39. 39.
    Franken EA, Smith WL, Smith JA, Fitzgerald JR. Percutaneous cholangiography in infants. AJR 1978;130:1057–1058PubMedCrossRefGoogle Scholar
  40. 40.
    Freedom RM, Treves S. Splenic scintigraphy and radionuclide venography in the heterotaxy syndrome. Radiology 1973;107:381–386PubMedGoogle Scholar
  41. 41.
    Freeman LM, Lan JA. Radiopharmaceutical evaluation of the hepatobiliary pathway. Nucl Med Biol 1990;17:129–139Google Scholar
  42. 42.
    Freeman LM, Meng CH, Johnson PM, Bernstein RG, Bosniak MA. False positive liver scans caused by disease processes in adjacent organs and structures. Br J Radiol 1969;42:651–656PubMedCrossRefGoogle Scholar
  43. 43.
    Freeman MH, Tonkin AK. Focal splenic defects. Radiology 1976;121:689–692PubMedGoogle Scholar
  44. 44.
    Froelich JW, Simione JF, McKusick KA, Winzelberg GG, Strauss HW Radionuclide imaging and ultrasound in liver-spleen trauma: a prospective comparison. Radiology 1982; 145:457–461PubMedGoogle Scholar
  45. 45.
    Gelfand MJ, Smith HS, Rychman FC, et al. Hepatobiliary scintigraphy in pediatric liver transplant recipients. Clin Nucl Med 1992;17:542–547PubMedCrossRefGoogle Scholar
  46. 46.
    Gellis SS. Biliary atresia. Pediatrics 1975;55:8–9PubMedGoogle Scholar
  47. 47.
    Gerhold JP, Klingensmith WC, Kuni CC, et al. Diagnosis of biliary atresia with radionuclide hepatobiliary imaging. Radiology 1983;146:499–504PubMedGoogle Scholar
  48. 48.
    Gilday D, Alderson PO. Scintigraphic evaluation of liver and spleen injury. Semin Nucl Med 1974; 4:357–370PubMedCrossRefGoogle Scholar
  49. 49.
    Golman K, Klaveness J, Holtz E, et al. A magnetic resonance imaging contrast medium for the liver and bile. Invest Radiol 1988;23(suppl 1): S243-S245PubMedCrossRefGoogle Scholar
  50. 50.
    Gooneratne NS, Buse MG, Quina LL. “Hot spot” on hepatic scintigraphy and radionuclide venacavography. AJR 1977;129:447–450PubMedCrossRefGoogle Scholar
  51. 51.
    Green HL, Helinek GL, Moran R, O’Neill J. A diagnostic approach to prolonged obstructive jaundice by 24-hour collection of duodenal fluid. J Pediatr 1979;95:412–414CrossRefGoogle Scholar
  52. 52.
    Harvey E, Loberg MD, Cooper M. Tc-99m-HIDA: a new radiopharmaceutical for hepatobiliary imaging [abstract]. J Nucl Med 1975;16:533Google Scholar
  53. 53.
    Hashimoto T, Ura J. Percutaneous transhepatic cholangiography (PTC) in biliary atresia with special reference to the structure of the intrahepatic bile ducts. J Pediatr Surg 1981;16:22–25PubMedCrossRefGoogle Scholar
  54. 54.
    Hawkins RA, Gambhir SS, Busuttil RW, et al. Radionuclide evaluation of liver transplants. Semin NuclMed 1988;18:199–212CrossRefGoogle Scholar
  55. 55.
    Hays DM, Woolley MM, Snyder WJ, et al. Diagnosis of biliary atresia: relative accuracy of percutaneous, liver biopsy, open liver biopsy, and operative cholangiography. J Pediatr 1967;71:598–607PubMedCrossRefGoogle Scholar
  56. 56.
    Hirsig J, Rickham PP. Early differential diagnosis between neonatal hepatitis and biliary atresia. J Pediatr Surg 1980;15:13–15PubMedCrossRefGoogle Scholar
  57. 57.
    Ivemark BI. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood: an analysis of the heart malformations in the splenic agenesis syndrome, with fourteen new cases. Acta Paediatr Upps 1955;44(suppl 104): 7–110Google Scholar
  58. 58.
    Jacobson SJ, De NG. Splenosis demonstrated by splenic scan. J Nucl Med 1971; 12:570–572PubMedGoogle Scholar
  59. 59.
    Johnston GS, Rosenbaum RC, Hill JL, Diaconis JN. Differentiation of jaundice in infancy: an application of radionuclide biliary studies. J Surg Oncol 1985;30:206–208PubMedCrossRefGoogle Scholar
  60. 60.
    Kasai M, Watanabe I, Ohi R. Follow-up studies of long-term survivors after hepatic portoenterostomy for “noncorrectable” biliary atresia. J Pediatr Surg 1975;10:173–182PubMedCrossRefGoogle Scholar
  61. 61.
    Kevy SV, Tefft M, Vawter GF, Rosen FS. Hereditary splenic hypoplasia. Pediatrics 1968;42:752–757PubMedGoogle Scholar
  62. 62.
    Kim SH. Choledochal cyst: survey by the surgical section of The American Academy of Pediatrics. J Pediatr Surg 1981;16:402–407PubMedCrossRefGoogle Scholar
  63. 63.
    King H, Schumaker HB. Splenic studies. I. Susceptibility to infection after splenectomy performed in infancy. Ann Surg 1952;136:239–242PubMedCrossRefGoogle Scholar
  64. 64.
    Klingensmith WC, Fritzberg AR, Koep LJ, Ronai P. A clinical comparison of Tc-99m dimethyl-imin-odiacetic acid, Tc-99m-pyridoxylidedeneglutamate and I-131-rose bengal in liver transplant patients. Radiology 1979;130:435PubMedGoogle Scholar
  65. 65.
    Klingensmith WC, Fritzberg AR, Spitzer VM, Kuni CC, Shanahan WSM. Clinical comparison of Tc-99m diisopropyl-IDA and diethyl-IDA Tc-99m for evaluation of the hepatobiliary system. Radiology 1981;140:791–795PubMedGoogle Scholar
  66. 66.
    Klingensmith WC, Fritzberg AR, Spitzer VM, et al. Work in progress: clinical evaluation of Tc-99m-trimethyl-bromo-IDA and Tc-99m-disopropyl-IDA for hepatobiliary imaging. Radiology 1983; 146:181–184PubMedGoogle Scholar
  67. 67.
    Landgarten S, Spencer RR Splenic displacement due to gastric dilatation. J Nucl Med 1972;13:223PubMedGoogle Scholar
  68. 68.
    Likhite VV. Immunological impairment and susceptibility to infection after splenectomy. JAMA 1976;236:1376–1377PubMedCrossRefGoogle Scholar
  69. 69.
    Loberg MD. Radiotracer distribution by active transport: the implication of nonlinear kinetics. In Colombette IG (ed): Principles of Radio-pharmacology. Boca Raton, FL: CRC Press, 1979Google Scholar
  70. 70.
    Loberg MD, Cooper M, Harvey E, Callery P, Faith W Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. J NuclMed 1976;17:633–638Google Scholar
  71. 71.
    Loberg MD, Fields AT. Chemical structure of tech-netium-99m-labeled N-(2,6-dimethylphenylcar-bamoylmethyl)-iminodiacetic acid (Tc-HIDA). Int JAppl Radiat Isotop 1978;29:167–173CrossRefGoogle Scholar
  72. 72.
    Loberg MD, Nunn AD, Porter DW Development of hepatobiliary imaging agents. In Freeman LM, Weissman HS (eds): Nuclear Medicine Annual. New York: Raven Press, 1981Google Scholar
  73. 73.
    Majd M, Reba RC, Altman RP. Effect of phenobarbital on 99mTc -scintigraphy in the evaluation of neonatal jaundice. Semin Nucl Med 1981; 11:194–204PubMedGoogle Scholar
  74. 74.
    Majd M, Reba RC, Altman RP. Hepatobiliary scintigraphy with Tc-99m PIPIDA in the evaluation of neonatal jaundice. Pediatrics 1981;67:140–145PubMedGoogle Scholar
  75. 75.
    Markisz JA, Treves ST, Davis RT. Normal hepatic and splenic sizes in children. Pediatr Radiol 1987;17:273–276PubMedCrossRefGoogle Scholar
  76. 76.
    Mishalany H. Repair of the ruptured spleen. J Pediatr Surg 1974;9:175–178PubMedCrossRefGoogle Scholar
  77. 77.
    Neindok H, Langer B. Liver scan: Budd-Chiari syndrome. J Nucl Med 1976;17:365–368Google Scholar
  78. 78.
    Nunn AD. Structure-distribution relationships of radiopharmaceuticals: correlation between the reversed-phase capacity factors for Tc-99m phenyl-carbamoylmethyliminodiacetic acids and their renal elimination. J Chromatogr 1983;255:91–100PubMedCrossRefGoogle Scholar
  79. 79.
    Nunn Ad, Loberg MD, Conley RA. A structure-distribution relationship approach leading to the development of Tc-99m mebroferin: an improved cholescintigraphic agent. J Nucl Med 1983; 24:423–430PubMedGoogle Scholar
  80. 80.
    Odell GBN, Boitnott JK. Evaluation of jaundice. In James AE, Wagner HN, Cook RE (eds): Pediatric Nuclear Medicine. Philadelphia: Saunders, 1974Google Scholar
  81. 81.
    Olsen WR. Delayed rupture of the spleen as an index of diagnostic accuracy [editorial]. Surg Gynecol Obstet 1974;138:82PubMedGoogle Scholar
  82. 82.
    Parker JD, Bennett LR. Effect of water ingestion on spleen size as determined by radioisotope scans. Acta Radiol [Diagn] (Stockh) 1971;11:385–392Google Scholar
  83. 83.
    Pearson HA, Cornelius EA, Schwartz AD, et al. Transfusion-reversible functional asplenia in young children with sickle-cell anemia. N Engl J Med 1970;283:334–337PubMedCrossRefGoogle Scholar
  84. 84.
    Pearson HA, Schiebler GL, Spencer RP. Functional hyposplenia in cyanotic congenital heart disease. Pediatrics 1971;48:277–280PubMedGoogle Scholar
  85. 85.
    Pearson HA, Spencer RP, Cornelius EA. Functional asplenia in sickle-cell anemia. N Engl J Med 1969;281:923–926PubMedCrossRefGoogle Scholar
  86. 86.
    Picozzi R, Bossi MC, Arosio M, et al. Value of hepatobiliary scintigraphy and ultrasonography in the differential diagnosis of jaundice. Nucl Med Commun 1985;6:97–108PubMedCrossRefGoogle Scholar
  87. 87.
    Porter DW, Loberg MD, Eacho PI, Weiner M. Comparison of hepatobiliary radiopharmaceuticals in an in-vitro model [abstract]. J Nucl Med 1979;20:642Google Scholar
  88. 88.
    Roberts WC, Berry WB, Morrow AG. The significance of splenia in the recognition of inoperable congenital heart disease. Circulation 1962; 26:1251–1253PubMedCrossRefGoogle Scholar
  89. 89.
    Rollo RD, Deland FH. The determination of liver mass from radionuclide images. Radiology 1968; 91:1191–1195PubMedGoogle Scholar
  90. 90.
    Rose V, Izukawa T, Moses CAR Syndromes of asplenia and polysplenia: a review of cardiac and non-cardiac malformations in 60 cases with special reference to diagnosis and prognosis. Br Heart J 1975;37:840–852PubMedCrossRefGoogle Scholar
  91. 91.
    Rosenthall L. Gastrointestinal imaging: imaging the liver in pediatrics. In James AE, Wagner HN, Cooke RE (eds): Pediatric Nuclear Medicine. Philadelphia: Saunders, 1974Google Scholar
  92. 92.
    Saha GB, Bakeson BP, Meaney TF, et al. Gd-DISIDA-a potential contrast agent for magnetic resonance imaging of the hepatobiliary system. J Med Allied Sci 1989;33:1–6Google Scholar
  93. 93.
    Scott-Smith W, Raftery AT, Wraight EP, Calne RY. Tc-99m labelled HIDA imaging in suspected biliary leaks after transplantation. Clin Nucl Med 1983;8:478PubMedCrossRefGoogle Scholar
  94. 94.
    Singer DB. Postsplenectomy sepsis. In Rosenberg HS, Bolande RP (eds): Perspectives in Pediatric Pathology. Chicago: Year Book, 1973Google Scholar
  95. 95.
    Slavo AF, Schiller A, Athanasoulis C, Goldabini J, McKusick KA. Hepatoadenoma and focal nodular hyperplasia: pitfalls in radiocolloid imaging. Radiology 1977; 125:451–455Google Scholar
  96. 96.
    Smith CH, Erlindson M, Schulman I, Stern G. Hazard of severe infections in splenectomized infants and children. Am J Med 1957;22:390–404PubMedCrossRefGoogle Scholar
  97. 97.
    Solheim K, Nerdrum HJ. Radionuclide imaging of splenic laceration and trauma. Clin Nucl Med 1979;4:528–533PubMedGoogle Scholar
  98. 98.
    Sorgen RA, Robbins DI. Bleeding gastric varices secondary to wandering spleen. Gastrointest Radiol 1980;5:25–27PubMedCrossRefGoogle Scholar
  99. 99.
    Spencer RP, Benever C. Growth of the human liver: a preliminary scan study. J Nucl Med 1970; 11:660–662PubMedGoogle Scholar
  100. 100.
    Spivak W, Sarkar S, Winter D, et al. Diagnostic utility of hepatobiliary scintigraphy with 99mTc -DISIDA in neonatal cholestasis. J Pediatr 1987;110:855–861PubMedCrossRefGoogle Scholar
  101. 101.
    Taplin GV, Meredith OM, Kade H. The radioactive I-131 tagged rose bengal uptake excretion test for liver function using external gamma ray scintillation counting techniques. J Lab Clin Med 1955; 45:665–678PubMedGoogle Scholar
  102. 102.
    Topilow AA, Steinhoff NG. Splenic pseudocyst: a late complication of trauma. J Trauma 1975; 15:260–263PubMedCrossRefGoogle Scholar
  103. 103.
    Treves S, Spencer RP. Liver and spleen scintigraphy in children. SeminNuclMed 1973;3:137–150Google Scholar
  104. 104.
    Treves ST. Spleen. In Treves ST (ed): Pediatric Nuclear Medicine. New York: Springer-Verlag, 1985:141–156Google Scholar
  105. 105.
    Treves ST, Unpublished data, 1984Google Scholar
  106. 106.
    Treves ST, Markisz JA. Liver. In Treves ST (ed): Pediatric Nuclear Medicine. New York: Springer-Verlag, 1985:129–140Google Scholar
  107. 107.
    Van Heertum RL, Yudd AP, Brunetti JC, Pennington MR, Gualtieri NM. Hepatic SPECT imaging in the detection and clinical assessment of hepatocellular disease. Clin Nucl Med 1992;17:948–953PubMedCrossRefGoogle Scholar
  108. 108.
    Walker W. Splenectomy in childhood: a review in England and Wales, 1960–1964. Br J Surg 1976;63:36–43PubMedCrossRefGoogle Scholar
  109. 109.
    Wechsler RL, Van TD. Fibropolycystic disease of the hepatobiliary system and kidneys. Am J Dig Dis 1976;21:1058–1069PubMedCrossRefGoogle Scholar
  110. 110.
    Weissmann HS, Chun KH, Frank MS, et al. Demonstration of traumatic bile leakage with cho-lescintigraphy and ultrasonography. AJR 1979; 133:843–847PubMedCrossRefGoogle Scholar
  111. 111.
    Weissmann HS, Frank M, Bernstein LM, Freeman LM. Rapid and accurate diagnosis of acute cholecystitis with Tc-99m HIDA cholescintigraphy. AJR 1979;132:523–528PubMedCrossRefGoogle Scholar
  112. 112.
    Weissmann HS, Rosenblatt R, Sugarman LA, Freeman LM. The role of nuclear imaging in evaluating the patient with cholestasis. Semin Ultrasound 1980;1:134–142Google Scholar
  113. 113.
    Weissmann HS, Sugarman LA, Freeman LM. The clinical role of technetium-99m iminodiacetic acid cholescintigraphy. In Freeman LM, Weissmann HS (eds): Nuclear Medicine Annual. New York: Raven Press, 1981Google Scholar
  114. 114.
    Winter ST. Trauma, splenectomy and the risk of infection [editorial]. Clin Pediatr (Phila) 1974; 13:1011–1012CrossRefGoogle Scholar
  115. 115.
    Wistow BW, Subramanian G, Van Heertum RL, et al. An evaluation of 99mTc -labeled hepatobiliary agents. J Nucl Med 1977;18:455–461PubMedGoogle Scholar
  116. 116.
    Wright RW, Williams EW Large posttraumatic splenic cyst diagnosed by radiology, isotope scintigraphy and ultrasound. Br J Radiol 1974;47:454–456PubMedCrossRefGoogle Scholar
  117. 117.
    Zanzi I, Markowitz J, Srivastava SC, et al. The use of a new radiopharmaceutical, 97Ru-DISIDA, and of 99mTc -sulfur colloid for the simultaneous evaluation of duodenogastric reflux and gastric emptying. Nucl MedCommun 1992;13:76–81Google Scholar
  118. 118.
    Ziessman HA, Fahey FH, Hixson DJ. Calculation of a gallbladder ejection fraction: advantage of continuous sincalide infusion over the three-minute infusion method. J Nucl Med 1992;33:537–541PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • S. T. Treves
  • A. G. Jones
  • J. Markisz

There are no affiliations available

Personalised recommendations