Characterization of the Developmental Stages

  • Kurt Benirschke
  • Peter Kaufmann


This chapter is a synopsis and presents brief descriptions of the average data of placenta and membranes throughout the single stages of placental development. Embryological data concerning embryo and fetus are given only insofar as they are of importance for the definition of the stage. It is not the intention of this chapter to compare data of various sources on a scientific level but rather to present data that are directly applicable to the pathological and histological examination of human material. For this purpose, all data have been extrapolated and were standardized where necessary.


Placental Villus Chorionic Plate Embryonic Disk Terminal Villus Carnegie Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aherne, W. and Dunnill, M.S.: Morphometry of the human placenta. Br. Med. Bull. 22: 5–8, 1966.PubMedGoogle Scholar
  2. Anderson, G.W.: Studies on the nucleated red cell count in the chorionic capillaries and the cord blood of various ages of pregnancy. Am. J. Obstetr. Gynecol. 42: 1–14, 1941.Google Scholar
  3. Boyd, J.D. and Hamilton, W.J.: The Human Placenta. Heffer, Cambridge, 1970.Google Scholar
  4. Clavero-Nunez, J.A. and Botella-Llusia, J.: Measurement of the villus surface in normal and pathologic placentas. Am. J. Obstet. Gynecol. 86: 234–240, 1961.Google Scholar
  5. Clavero-Nunez, J.A. and Botella-Llusia, J.: Ergebnisse von Messungen der Gesamtoberfläche normaler und krankhafter Placenten. Arch. Gynäkol. 198: 56: 60, 1963.Google Scholar
  6. Eckardt, K.-U., Ratcliffe, P.J., Tan, C.C., Bauer, C. and Kurtz, A.: Age-dependent expression of the erythropoietin gene in rat liver and kidneys. J. Clin. Invest. 89: 753–760, 1992.PubMedCrossRefGoogle Scholar
  7. Fox, H. The incidence and significance of nucleated erythrocytes in the foetal vessels of the mature human placenta. J. Obstet. Gynaecol. B. Commonw. 74: 40–43, 1967.CrossRefGoogle Scholar
  8. Geissler, D. and Japha, A.: Beitrag zu den Anämieen junger Kinder. Jahrb. Kinderh. 56: 627–647, 1901.Google Scholar
  9. Gloede, B.: Morphometrische Untersuchungen zur Reifung menschlicher Placentazotten. Medical Thesis, University of Hamburg, 1984.Google Scholar
  10. Green, D.W. and Mimouni, F.: Nucleated erythrocytes in healthy infants and in infants of diabetic mothers. J. Pediatr. 116: 129–131, 1990.PubMedCrossRefGoogle Scholar
  11. Hörmann, G.: Lebenskurven normaler und entwicklungsfähiger Chorionzotten; Ergebnisse systematischer Zottenmessungen. Arch. Gynäkol. 181: 29–43, 1951.PubMedCrossRefGoogle Scholar
  12. Johannigmann, J., Zahn, V. and Thieme, V.: Einführung in die Ultraschalluntersuchung mit dem Vidoson. Elektromedica 2: 1–11, 1972.Google Scholar
  13. Kaufmann, P: Untersuchungen über die Langhanszellen in der menschlichen Placenta. Z. Zellforsch. 128: 283–302, 1972.PubMedCrossRefGoogle Scholar
  14. Kaufmann, P: Entwicklung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and E Kubli, eds., pp. 13–50. Thieme Verlag, Stuttgart, 1981.Google Scholar
  15. Kaufmann, P. and Castellucci, M.: Development and anatomy of the placenta. In, Haines’ and Taylor’s Textbook of Obstetrical and Gynaecological Pathology, 4th Ed. H. Fox and M. Wells, eds. pp. 1437–1476. Churchill Livingstone, London, 1995.Google Scholar
  16. Kaufmann, P. and Stegner, H.E.: Über die funktionelle Differenzierung des Zottensyncytiums in der menschlichen Placenta. Z. Zellforsch. 135: 361–382, 1972.PubMedCrossRefGoogle Scholar
  17. Knopp, J.: Das Wachstum der Chorionzotten vom II. bis X. Monatsschr. Z. Anat. Entwicklungsgesch. 122: 42–59, 1960.CrossRefGoogle Scholar
  18. Lippman, H.S.: A morphologic and quantitative study of the blood corpuscles in the new-born period. Am. J. Dis. Child. 27: 473–536, 1924.Google Scholar
  19. Maier, R.E, Böhme, K., Dudenhausen, J.W. and Obladen, M.: Cord blood erythopoietin in relation to different markers of fetal hypoxia. Obstet. Gynecol. 81: 575–580, 1993.PubMedGoogle Scholar
  20. Nicolini, U., Nicolaidis, P, Fisk, N.M., Vaughn, J.L, Fusi, L., Gleeson, R. and Rodeck, C.H.: Limited role of fetal blood sampling in prediction of outcome in intrauterine growth retardation. Lancet 336: 768–772, 1990.PubMedCrossRefGoogle Scholar
  21. O’Rahilly, R.: Developmental stages in human embryos. Part A, Publ. 631. Carnegie Institute, Washington, D.C., 1973.Google Scholar
  22. Phelan, J.P., Ahn, N.O., Korst, L. and Martin, G.I.: Nucleated red blood cells: a marker for fetal asphyxia (abstract 49). Am. J. Obstet. Gynecol. 170: 286, 1993.Google Scholar
  23. Ryerson, C.S. and Sanes, S.: The age of pregnancy. Histologic diagnosis from percentage of erythroblasts in chorionic capillaries. Arch. Pathol. 17: 548–651, 1934.Google Scholar
  24. Schiemer, H.G.: Mass und Zahl der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and E Kubli, eds., pp. 112–122. Thieme Verlag, Stuttgart, 1981.Google Scholar
  25. Shields, L.E., Widness, J.A. and Brace, R.A.: Restoration of fetal red blood cells and plasma proteins after a moderately severe hemorrhage in the ovine fetus. Am. J. Obstet. Gynecol. 169: 1472–1478, 1993.PubMedGoogle Scholar
  26. Shurin, S.B.: The blood and the hematopoietic system. In, Neonatal-Perinatal Medicine. A. A. Fanaroff and R.J. Martin, eds., pp. 826–827. C. V. Mosby, St. Louis, 1987.Google Scholar
  27. Winckel, F.K.L.W.: Lehrbuch der Geburtshilfe. 2nd Ed. Veit, Leipzig, 1893.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Peter Kaufmann
    • 2
  1. 1.University Medical CenterUniversity of California, San DiegoSan DiegoUSA
  2. 2.Institut für Anatomie der Medizinischen FakultätRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations