Architecture of Normal Villous Trees

  • Kurt Benirschke
  • Peter Kaufmann


The ramifications of the villous trees can be subdivided into segments that differ mainly as to caliber, stromal structure, vessel structure, and position within the villous tree (Figure 7.1). Five villous types have been described (Kaufmann et al., 1979; Sen et al., 1979; Castellucci & Kaufmann, 1982a,b; Kaufmann, 1982; Castellucci et al., 1984, 1990; Burton, 1987), some of which can be further subdivided. As is discussed, all villous types derive from single precursors, the mesenchymal villi, which correspond to the tertiary villi of the early stages of placentation.


Human Placenta Villous Tree Intervillous Space Vascular Endothelial Growth Factor Connective Tissue Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, A.: Heparin-binding angiogenic growth factors in pregnancy. Trophoblast Res. 10: 215–258, 1997.Google Scholar
  2. Ahmed, A. and Kilby, M.: Commentary: Hypoxia or hyperoxia in placental insufficiency? Lancet 350: 826–827, 1997.PubMedCrossRefGoogle Scholar
  3. Ahmed, A., Li, X.F., Dunk, C., Whittle, M.J., Rushton, D.I. and Rollason, T.: Colocalisation of vascular endothelial growth factor and its flt-1 receptor in human placenta. Growth Factors 12: 235–243, 1995.PubMedCrossRefGoogle Scholar
  4. Ahmed, A., Whittle, M.J. and Khaliq, A.: Differential expression of placenta growth factor (PIGF) and vascular endothelial growth factor (VEGF) in abnormal placentation. J. Soc. Gynecol. Invest. 4: A663, 1997.Google Scholar
  5. Aladjem, S.: Morphopathology of the human placental villi and the fetal outcome. J. Obstet. Gynaecol. Br. Commonw. 75: 1237–1244, 1968.PubMedCrossRefGoogle Scholar
  6. Alvarez, H.: Syncytial proliferation in normal and toxemic pregnancies. Obstet. Gynecol. 29: 637–643, 1967.PubMedGoogle Scholar
  7. Alvarez, H., De Bejar, R. and Aladjem, S.: La placenta human. Aspectos morfologicos y fisio-patologicos. In, 4th Uruguayan Congress for Obstetrics and Gynecology, Vol. 1, pp. 190–261, 1964.Google Scholar
  8. Alvarez, H., Morel, R.L., Benedetti, W.L. and Scavarelli, M.: Trophoblast hyperplasia and maternal arterial pressure at term. Am. J. Obstet. Gynecol. 105: 1015–1021, 1969.PubMedGoogle Scholar
  9. Alvarez, H., Benedetti, W.L., Morel., R.L. and Scavarelli, M.: Trophoblast development gradient and its relationship to placental hemodynamics. Am. J. Obstet. Gynecol. 106: 416–420, 1970.PubMedGoogle Scholar
  10. Alvarez, H., Medrano, C.V., Sala, M.A. and Benedetti, W.L.: Trophoblast development gradient and its relationship to placental hemodynamics II. Study of fetal cotyledons from the toxemic placenta. Am. J. Obstet. Gynecol. 114: 873–878, 1972.PubMedGoogle Scholar
  11. Amaladoss, A.S.P. and Burton, G.J.: Organ culture of human placental villi in hypoxic and hyperoxic conditions: a morpho-metric study. J. Dev. Physiol. 7: 13–118, 1985.Google Scholar
  12. Amstutz, E.: Beobachtungen über die Reifung der Chorionzotten in der menschlichen Placenta mit besonderer Berücksichtigung der Epithelplatten. Acta Anat. (Basel) 42: 12–30, 1960.Google Scholar
  13. Ara, G., Bari, M.A. and Siddiquey, A.K.: Effects of age, parity and length of pregnancy on the morphology and histology of human placenta. Bangladesh Med. Res. Counc. Bull. 10: 53–58, 1984.Google Scholar
  14. Arnholdt, H., Meisel, F., Fandrey, K. and Löhrs, U.: Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch. B Cell Pathol. 60: 365–372, 1991.CrossRefGoogle Scholar
  15. Arts, N.F.T.: Investigation on the vascular system of the placenta. I. General introduction and the fetal vascular system. Am. J. Obstet. Gynecol. 82: 147–166, 1961.Google Scholar
  16. Bacon, B.J., Gilbert, R.D., Kaufmann, P., Smith, A.D., Trevino, F.T. and Longo, L.D.: Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta 5: 475–488, 1984.PubMedCrossRefGoogle Scholar
  17. Banovac, K., Ryan, E.A. and O’Sullivan, M.J.: Triiodothyronine (T3) nuclear binding sites in human placenta and decidua. Placenta 7: 543–549, 1986.PubMedCrossRefGoogle Scholar
  18. Bartels, H. and Moll, W.: Passage of inert substances and oxygen in the human placenta. Pfluegers Arch. Gesamte Physiol. 280: 165, 1964.CrossRefGoogle Scholar
  19. Becker, V: Mechanismus der Reifung fetaler Organe. Verh. Dtsch. Ges. Pathol. 46: 309–314, 1962a.PubMedGoogle Scholar
  20. Becker, V: Funktionelle Morphologie der Plazenta. Arch. Gynäkol. 198: 3–28, 1962b.CrossRefGoogle Scholar
  21. Becker, V: Pathologie der Ausreifung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F Kubli, eds., pp. 266–281. Thieme, Stuttgart, 1981.Google Scholar
  22. Becker, V. and Jipp, P.: Über die Trophoblastschale der mensch- lichen Plazenta. Geburtsh. Frauenheilk. 23: 466–474, 1963.PubMedGoogle Scholar
  23. Becker, V. and Seifert, K.: Die Ultrastruktur der Kapillarwand in der menschlichen Placenta zur Zeit der Schwangerschaftsmitte. Z. Zellforsch. 65: 380–396, 1965.PubMedCrossRefGoogle Scholar
  24. Beischer, N.A., Sivasamboo, R., Vohra, S., Silpisornkosal, S. and Reid, S.: Placental hypertrophy in severe pregnancy anaemia. J. Obstet. Gynaecol. Br. Commonw. 77: 398–409, 1970.PubMedCrossRefGoogle Scholar
  25. Boe, F.: Studies on the vascularization of the human placenta. Acta Obstet. Gynecol. Scand. (Suppl. 5) 32: 1–92, 1953.CrossRefGoogle Scholar
  26. Boe, F.: Studies on the human placenta. II. Gross morphology of the fetal structures in the young placenta. Acta Obstet. Gynecol. Scand. 47: 420–435, 1968.CrossRefGoogle Scholar
  27. Boe, F.: Studies on the human placenta. III. Vascularization of the young fetal placenta. A. Vascularization of the chorionic villus. Acta Obstet. Gynecol. Scand. 48: 159–166, 1969.CrossRefGoogle Scholar
  28. Boren, U., Fernstroem, I. and Westman, A.: Eine arteriographische Studie des Plazentarkreislaufs. Geburtsh. Frauenheilkd. 18: 1–9, 1958.Google Scholar
  29. Bouw, G.M., Stolte, L.A.M., Baak, J.P.A. and Oort, J.: Quantitative morphology of the placenta. 1. Standardization of sampling. Eur. J. Obstet. Gynecol. Reprod. Biol. 6: 325–331, 1976.CrossRefGoogle Scholar
  30. Boyd, J.D. and Hamilton, W.J.: The Human Placenta. Heffer, Cambridge, 1970.Google Scholar
  31. Brosens, I.A.: The uteroplacental vessels at term—the distribution and extent of physiological changes. Trophoblast Res. 3: 61–67, 1988.Google Scholar
  32. Burton, G.J.: The fine structure of the human placental villus as revealed by scanning electron microscopy. Scanning Electron Microsc. 1: 1811–1828, 1987.Google Scholar
  33. Burton, G.J. and Palmer, M.E.: Eradicating fetomaternal fluid shift during perfusion fixation of the human placenta. Placenta 9: 327–332, 1988.PubMedCrossRefGoogle Scholar
  34. Cantle, S.J., Kaufmann, R, Luckhardt, M. and Schweikhart, G.: Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8: 221–234, 1987.PubMedCrossRefGoogle Scholar
  35. Cappoen, J.P.: Physiology of the thyroid during pregnancy. Various exploratory tests. Rev. Fr. Gynecol. Obstet. 84: 893–897, 1989.PubMedGoogle Scholar
  36. Castellucci, M. and Kaufmann, R: A three-dimensional study of the normal human placental villous core: II. Stromal architecture. Placenta 3: 269–286, 1982a.PubMedCrossRefGoogle Scholar
  37. Castellucci, M. and Kaufmann, P.: Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl. Anat. 22: 40–45, 1982b.PubMedGoogle Scholar
  38. Castellucci, M., Schweikhart, G., Kaufmann, R. and Zaccheo, D.: The stromal architecture of the immature intermediate villus of the human placenta. Gynecol. Obstet. Invest. 18: 95–99, 1984.PubMedCrossRefGoogle Scholar
  39. Castellucci, M., Scheper, M., Scheffen, I., Celona, A. and Kaufmann, P: The development of the human placental villous tree. Anat. Embryol. (Berl.) 181: 117–128, 1990.CrossRefGoogle Scholar
  40. Challier, J.C., Hauguel, S. and Desmaizieres, V.: Effect of insulin on glucose uptake and metabolism in the human placenta. J. Clin. Endocrinol. Metab. 62: 803–807, 1986.PubMedCrossRefGoogle Scholar
  41. Chwalisz, K., Ciesla, I. and Garfield, R.E.: Inhibition of nitric oxide (NO) synthesis induces preterm parturition and preeclampsia-like conditions in guinea pigs. Presented at the Society for Gynecological Investigation Meeting, Chicago, IL, 1994.Google Scholar
  42. Clark, D.E., Smith, S.K., Sharkey, A.M. and Charnock-Jones, D.S.: Localization of VEGF and expression of its receptors flt and KDR in human placenta throughout pregnancy. Hum. Reprod. (oxf.) 11: 1090–1098, 1996.CrossRefGoogle Scholar
  43. Cooper, J.C., Sharkey, A.M., Charnock-Jones, D.S., Palmer, C.R. and Smith, S.K.: VEGF mRNA levels in placentae from pregnancies complicated by pre-eclampsia. B. J. Obstet. Gynaecol. 103: 1191–1196, 1996.CrossRefGoogle Scholar
  44. Crescimanno, C., Marzioni, D., Persico, M.G., Vuckovic, M., Mühlhauser, J. and Castellucci, M.: Expression of bFGF, PIGF and their receptors in the human placenta. Placenta 16: A13, 1995.Google Scholar
  45. Dantzer, V., Leiser, R., Kaufmann, P. and Luckhardt, M.: Comparative morphological aspects of placental vascularization. Trophoblast Res. 3: 235–260, 1988.Google Scholar
  46. Demir, R., Kaufmann, R, Castellucci, M., Erbengi, T. and Kotowski, A.: Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. (Basel) 136: 190–203, 1989.Google Scholar
  47. Demir, R., Demir, N., Kohnen, G., Kosanke, G., Mironov, V., Üstünel, I. and Kocamaz, E.: Ultrastructure and distribution of myofibroblast-like cells in human placental stem villi. Electron Microsc. 3: 509–510, 1992.Google Scholar
  48. Demir, R., Kosanke, G., Kohnen, G., Kertschanska, S. and Kaufmann, P.: Classification of human placental stem villi: review of structural and functional aspects. Microsc. Res. Tech. 38: 29–41, 1997.PubMedCrossRefGoogle Scholar
  49. Desoye, G., Hartmann, M., Blaschitz, A., Dohr, G., Kohnen, G. and Kaufmann, R: Insulin receptors in syncytiotrophoblast and fetal endothelium of human placenta Immunohistochemical evidence for developmental changes in distribution pattern. Histochemistry 101: 277–285, 1994.PubMedCrossRefGoogle Scholar
  50. Desoye G., Hartmann, M., Jones, C.J.P, Wolf, H.J., Kohnen, G., Kosanke, G. and Kaufmann, R: Location of insulin receptors in the placenta and its progenitor tissues. Microsc. Res. Tech. 38: 63–75, 1997.PubMedCrossRefGoogle Scholar
  51. Ehrhardt, G., Gerl, D., Estel, C., Kadner, J. and Günther, M.: Morphologische Auswertbarkeit von in vitro gewonnenen Punktionszylindern der Plazenta. Zentralbl. Gynäkol. 96: 705–711, 1974.PubMedGoogle Scholar
  52. Enders, A.C. and King, B.F.: The cytology of Hofbauer cells. Anat. Rec. 167: 231–252, 1970.PubMedCrossRefGoogle Scholar
  53. Feneley, M.R. and Burton, G.J.: Villous composition and membrane thickness in the human placenta at term: a stereological study using unbiased estimators and optimal fixation techniques. Placenta 12: 131–142, 1991.PubMedCrossRefGoogle Scholar
  54. Ferriani, R.A., Ahmed, A., Sharkey, A.M. and Smith, S.K.: Colocalization of acidic and basic fibroblast growth factor (FGF) in human placenta and the cellular effects of bFGF in trophoblast cell line JEG-3. Growth Factors 10: 259, 1994.PubMedCrossRefGoogle Scholar
  55. Fisher, D.A.: Maternal-fetal thyroid function in pregnancy. Clin. Perinatol. 10: 615–626, 1983.PubMedGoogle Scholar
  56. Fong, G.-H., Rossant, J., Gertsenstein, M. and Breitman, M.L.: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature (Lond.) 376: 66–70, 1995.CrossRefGoogle Scholar
  57. Fox, H.: The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Commonw. 71: 885–893, 1964.PubMedCrossRefGoogle Scholar
  58. Fox, H.: Effect of hypoxia on trophoblast in organ culture. A morphologic and autoradiographic study. Am. J. Obstet. Gynecol. 107: 1058–1064, 1970.PubMedGoogle Scholar
  59. Fox, H.: Pathology of the Placenta. 1st Ed. Saunders, London, 1978.Google Scholar
  60. Fox, H.: Pathology of the Placenta. 2nd Ed. Saunders, London, 1997.Google Scholar
  61. Freese, U.E.: The fetal-maternal circulation of the placenta. I. Histomorphologic, plastoid injection, and X-ray cinematographic studies on human placentas. Am. J. Obstet. Gynecol. 94: 354–360, 1966.Google Scholar
  62. Garfield, R.E., Yallampalli, C., Buhimschi, I. and Chwalisz, K.: Reversal of preeclampsia symptoms induced in rats by nitric oxide inhibition with L-arginine, steroid hormones and an endothelin antagonist. Presented at the Society for Gynecologic Investigation Meeting, 1994.Google Scholar
  63. Geier, G., Schuhmann, R. and Kraus, H.: Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten: autoradiographische Untersuchungen. Arch. Gynäkol. 218: 31–37, 1975.PubMedCrossRefGoogle Scholar
  64. Gerl, D., Eichhorn, H., Eichhorn, K.-H. and Franke, H.: Quantitative Messungen synzytialer Zellkernkonzentrationen der menschlichen Plazenta bei normalen und pathologischen Schwangerschaften. Zentralbl. Gynäkol. 95: 263–266, 1973.PubMedGoogle Scholar
  65. Graf, R., Langer, J.U., Schönfelder, G., öney, T., Hartel-Schenk, S., Reutter, W. and Schmidt, H.H.H.W.: The extravascular contractile system in the human placenta. Morphological and immunocytochemical investigations. Anat. Embryol. 190: 541–548, 1994.PubMedCrossRefGoogle Scholar
  66. Graf, R., Schönfelder, G., Mühlberger, M. and Gutsmann, M.: The perivascular contractile sheath of human placental stem villi; its isolation and characterization. Placenta 16: 57–66, 1995.PubMedCrossRefGoogle Scholar
  67. Graf, R., Matejevic, D., Schuppan, D., Neudeck, H., Shakibaei, M. and Vetter, K.: Molecular anatomy of the perivascular sheath in human placental stem villi: the contractile apparatus and its association to the extracellular matrix. Cell Tissue Res. 290: 601–607, 1997.PubMedCrossRefGoogle Scholar
  68. Graham, C.H. and Lala, P.K.: Mechanism of control of trophoblast invasion in situ. J. Cell Physiol. 148: 228–234, 1991.PubMedCrossRefGoogle Scholar
  69. Habashi, S., Burton, G.J. and Steven, D.H.: Morphological study of the fetal vasculature of the human placenta: scanning electron microscopy of corrosion casts. Placenta 4: 41–56, 1983.PubMedCrossRefGoogle Scholar
  70. Hershman, J.M.: Hyperthyroidism induced by trophoblastic thyrotropin. Mayo Clin. Proc. 47: 913–918, 1972.Google Scholar
  71. Highison, G.J. and Tibbitts, F.D.: Ultrasonic microdissection of immature intermediate human placental villi as studied by scanning electron microscopy. Scanning Electron Microsc. 2: 679–685, 1986.Google Scholar
  72. Hitschold, T., Müntefering, H., Ulrich, S. and Berle, P.: Does extremely low fetoplacental impedance as estimated by umbilical artery Doppler velocimetry also indicate fetuses at risk? Ultrasound Gynecol. 8: 39A, 1996.Google Scholar
  73. Holmgren, L., Glaser, A., Pfeifer-Ohlsson, N.S. and Ohlsson, R.: Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development (Camb.) 113: 749–754, 1991.Google Scholar
  74. Hölzl, M., Lüthje, D. and Seck-Ebersbach, K.: Placentaveränderungen bei EPH-Gestose. Arch. Gynäkol. 217: 315–334, 1974.PubMedCrossRefGoogle Scholar
  75. Hörmann, G.: Lebenskurven normaler und entwicklungsfähiger Chorionzotten; Ergebnisse systematischer Zottenmessungen. Arch. Gynäkol. 181: 29–43, 1951.PubMedCrossRefGoogle Scholar
  76. Hörmann, G.: Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta. Arch. Gynäkol. 184: 109–123, 1953.CrossRefGoogle Scholar
  77. Hörmann, G.: Versuch einer Systematik plazentarer Entwicklungsstörungen. Geburtsh. Frauenheilkd. 18: 345–349, 1958a.Google Scholar
  78. Hörmann, G.: Zur Systematik einer Pathologie der menschlichen Placenta. Arch. Gynäkol. 191: 297–344, 1958b.PubMedCrossRefGoogle Scholar
  79. Hugentobler, W., Binkert, F., Haenel, A.F. and Schaetti, D.: Die Chorionzotten-(Plazenta-)Biopsie im II. und III. Trimenon: Neue Perspektiven der Pränataldiagnostik. Geburtsh. Frauenheilkd. 47: 729–732, 1987.CrossRefGoogle Scholar
  80. Hunt, J.S.: Macrophages in human uteroplacental tissues: a review. Am. J. Reprod. Immunol. 21: 119–122, 1989.PubMedGoogle Scholar
  81. Jackson, M.R., Mayhew, T.M. and Haas, J.D.: Morphometric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of newborn. Placenta 8: 487–495, 1987.PubMedCrossRefGoogle Scholar
  82. Jackson, M.R., Carney, E.W., Lye, S.J. and Ritchie, J.W.K. Localization of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta. 15 (4): 341–353, 1994.PubMedCrossRefGoogle Scholar
  83. Jirkovska, M., Kubinova, L., Krekule, I. and Hach, P.: Spatial arrangement of fetal placental capillaries in terminal villi: a study using confocal microscopy. Anat. Embryol. 197: 263–272, 1998.PubMedCrossRefGoogle Scholar
  84. Jokhi, E, Chumbley, G., King, A., Gardner, L. and Loke, W.: Expression of the colony stimulating factor-1 receptor by cells at the uteroplacental interface. Placenta 13: A29, 1992.CrossRefGoogle Scholar
  85. Jones, C.J.P., Hartmann, M., Blaschitz, A. and Desoye, G.: Ultra-structural localization of insulin receptors in human placenta. Am. J. Reprod. Immunol. 30: 136–145, 1993.PubMedGoogle Scholar
  86. Kadyrov, M.K., Kosanke, G., Kingdom, J.C.P., and Kaufmann, P. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 352 (9142): 1747–1749, 1998.PubMedCrossRefGoogle Scholar
  87. Kaneoka, T., Taguchi, S., Shimizu, H. and Shirakawa, K.: Prenatal diagnosis and treatment of intrauterine growth retardation. J. Perinat. Med. 11: 204–212, 1983.PubMedCrossRefGoogle Scholar
  88. Karimu, A.L. and Burton, G.J.: The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br. J. Obstet. Gynaecol. 101: 57–63, 1994.PubMedCrossRefGoogle Scholar
  89. Kaufmann, P.: Entwicklung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 13–50. Thieme Verlag, Stuttgart, 1981.Google Scholar
  90. Kaufmann, P.: Development and differentiation of the human placental villous tree. Bibl. Anat. 22: 29–39, 1982.PubMedGoogle Scholar
  91. Kaufmann, P.: Basic morphology of the fetal and maternal circuits in the human placenta. Contrib. Gynecol. Obstet. 13: 5–17, 1985.PubMedGoogle Scholar
  92. Kaufmann, P. and Davidoff, M.: The guinea pig placenta. Adv. Anat. Embryol. Cell Biol. 53: 1–91, 1977.Google Scholar
  93. Kaufmann, P. and Scheffen, I.: Placental development. In, Neonatal and Fetal Medicine—Physiology and Pathophysiology, Vol. I. R.A. Polin and W.W. Fox, eds., pp. 47–55. Saunders, Orlando, 1992.Google Scholar
  94. Kaufmann, E, Schiebler, T.H., Ciobotaru, C. and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. II. Zur Gliederung des Syncytiotrophoblasten. Histochemistry 40: 191–207, 1974.PubMedCrossRefGoogle Scholar
  95. Kaufmann, P., Gentzen, D.M. and Davidoff, M.: Die Ultrastruktur von Langhanszellen in pathologischen menschlichen Placenten. Arch. Gynaekolo 222: 319–332, 1977a.CrossRefGoogle Scholar
  96. Kaufmann, E, Stark, J. and Stegner, H.-E.: The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177: 105–121, 1977b.PubMedCrossRefGoogle Scholar
  97. Kaufmann, P., Sen, D.K. and Schweikhart, G.: Classification of human placental villi. I. Histology and scanning electron microscopy. Cell Tissue Res. 200: 409–423, 1979.PubMedCrossRefGoogle Scholar
  98. Kaufmann, P., Nagl, W. and Fuhrmann, B.: Die funktionelle Bedeutung der Langhanszellen der menschlichen Plazenta. Ann. Anat. 77: 435–436, 1983.Google Scholar
  99. Kaufmann, P., Bruns, U., Leiser, R., Luckhardt, M. and Winterhager, E.: The fetal vascularization of term human placental villi. II. Intermediate and terminal villi. Anat. Embryol. (Berl.) 173: 203–214, 1985.CrossRefGoogle Scholar
  100. Kaufmann, P., Luckhardt, M., Schweikhart, G. and Cantle, S.J.: Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8: 235–247, 1987.PubMedCrossRefGoogle Scholar
  101. Kaufmann, E, Luckhardt, M. and Leiser, R.: Three-dimensional representation of the fetal vessel system in the human placenta. Trophoblast Res. 3: 113–137, 1988.Google Scholar
  102. Kaufmann, R. and Kingdom, J.C.P.: Development of the vascular system in the placenta. In, Morphogenesis of Endothelium. W. Risau, ed. Saunders, London, 1999 (in press).Google Scholar
  103. Kennedy, R.L. and Darne, J.: The role of hCG in regulation of the thyroid gland in normal and abnormal pregnancy. Obstet. Gynecol. 78: 298–307, 1991.PubMedGoogle Scholar
  104. Khaliq, A., Li, X.F., Shams, M., Sisi, E, Acevedo, C.A., Whittle, M.J., Weich, H. and Ahmed, A.: Localisation of placenta growth factor P1GF in human term placenta. Growth Factors 13: 243, 1996.PubMedCrossRefGoogle Scholar
  105. King, B.F.: Ultrastructural differentiation of stromal and vascular components in early macaque placental villi. Am. J. Anat. 178: 30–44, 1987.PubMedCrossRefGoogle Scholar
  106. Kingdom, J.C.P. and Kaufmann, R: Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18: 613–621, 1997.PubMedCrossRefGoogle Scholar
  107. Kingdom, J.C.P., Burrell, S.J. and Kaufmann, P.: Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet. Gynecol. 9: 271–286, 1997a.Google Scholar
  108. Kingdom, J.C.P., Macara, L.M., Krebs, C., Leiser, R. and Kaufmann, R: Pathological basis for abnormal umbilical artery Doppler waveforms in pregnancies complicated by intrauterine growth restriction. Trophoblast Res. 10: 291–309, 1997b.Google Scholar
  109. Kiserud, T., Hellevik, L.R., Eik-Nes, S.H., Angelsen, B.A. and Blaas, H.G.: Estimation of the pressure gradient across the fetal ductus venosus based on Doppler velocimetry. Ultrasound Med. Biol. 20: 225–232, 1994.Google Scholar
  110. Kohnen, G., Castellucci, M., Hsi, B.L., Yeh, C.J.G. and Kaufmann, R: The monoclonal antibody GB42—a useful marker for the differentiation of myofibroblasts. Cell Tissue Res. 281: 231–242, 1995.PubMedCrossRefGoogle Scholar
  111. Kohnen, G., Kertschanska, S., Demir, R. and Kaufmann, R: Placental villous stroma as a model system for myofibroblast differentiation. Histochem. Cell Biol. 101: 415–429, 1996.CrossRefGoogle Scholar
  112. Kohnen, G., Kosanke, G., Korr, H. and Kaufmann, R: Comparison of various proliferation markers applied to human placental tissue. Placenta 14: A38, 1993.Google Scholar
  113. Kosanke, G., Castellucci, M., Kaufmann, R and Mironov, V.A.: Branching patterns of human placental villous trees: perspectives of topological analysis. Placenta 14: 591–604, 1993.PubMedCrossRefGoogle Scholar
  114. Kosanke, G., Kadyrov, M., Korr, H. and Kaufmann, R: Maternal anemia results in increased proliferation in human placental villi. Trophoblast Res. 11: 339–357, 1998.Google Scholar
  115. Krantz, K.E. and Parker, J.C.: Contractile properties of the smooth muscle in the human placenta. Clin. Obstet. Gynecol. 6: 26–38, 1963.CrossRefGoogle Scholar
  116. Krebs, C., Macara, L.M., Leiser, R., Bowman, A.W., Greer, I.A. and Kingdom, J.C.P.: Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol. 175: 1534–1542, 1996.PubMedCrossRefGoogle Scholar
  117. Krebs, C., Longo, L.D. and Leiser, R.: Term ovine placental vasculature: comparison of sea level and high altitude conditions by corrosion cast and histomorphometry. Placenta 18: 43–51, 1997.PubMedCrossRefGoogle Scholar
  118. Kumar, R. and Chaudhuri, B.N.: Altered maternal thyroid function: fetal and neonatal development of rat. Indian J. Physiol. Pharmacol. 33: 233–238, 1989.Google Scholar
  119. Kurjak, A. and Pal, A.: The effect of Gestanon on the fetal and uteroplacental blood flow. Acta Med. Iugosl. 40: 121–131, 1986.Google Scholar
  120. Larsen, L.G., Clausen, H.V., Andersen, B. and Graem, N.: A stereologic study of postmature placentas fixed by dual perfusion. Am. J. Obstet. Gynecol. 172: 500–507, 1995.PubMedCrossRefGoogle Scholar
  121. Lehmann, W.D., Schuhmann, R. and Kraus, H.: Regionally different steroid biosynthesis within materno-fetal circulation units (placentones) of mature human placentas. J. Perinat. Med. 1: 198–204, 1973.PubMedCrossRefGoogle Scholar
  122. Leiser, R.: Microvascularisation der Ziegenplazenta dargestellt mit rasterelektronisch untersuchten Gefäßausgüssen. Schweiz. Arch. Tierheilkd. 129: 59–74, 1987.PubMedGoogle Scholar
  123. Leiser, R., Kosanke, G. and Kaufmann, R: Human placental vascularization. In, Placenta: Basic Research for Clinical Application. H. Soma, ed., pp. 32–45. Karger, Basel, 1991.Google Scholar
  124. Leiser, R., Luckhardt, M., Kaufmann, P., Winterhager, E. and Bruns, U.: The fetal vascularisation of term human placental villi. I. Peripheral stem villi. Anat. Embryol. 173: 71–80, 1985.PubMedCrossRefGoogle Scholar
  125. Lemtis, H.: Über die Architektonik des Zottengefäßapparates der menschlichen Plazenta. Anat. Anz. 102: 106–133, 1955.PubMedGoogle Scholar
  126. Lemtis, H.: New insights into the maternal circulatory system of the human placenta. In, The Foetoplacental Unit. A. Pecile and D. Finzi, eds. Excerpta Medica, Amsterdam, 1969.Google Scholar
  127. Lysiak, J., Khoo, N., Conelly, I., Stettler-Stevenson, W. and Peeyush, L.: Role of transforming growth factor (TGF) and epidermal growth factor (EGF) on proliferation, invasion, and hCG production by normal and malignant trophoblast. Placenta 13: A41, 1992.CrossRefGoogle Scholar
  128. Macara, L., Kingdom, J.C.P., Kaufmann, R, Kohnen, G., Hair, J., More, I.A.R., Lyall, F. and Greer, I.A.: Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveformes. Placenta 17: 37–48, 1996.PubMedCrossRefGoogle Scholar
  129. Maruo, T., Matsuo, H. and Mochizuki, M.: Thyroid hormone as a biological amplifier of differentiated trophoblast function in early pregnancy. Acta Endocrinol. (Copenh.) 125: 58–66, 1991.Google Scholar
  130. Marzolf, G., Lobstein, J.F., Dillmann, J.C., Spizzo, M., Eberst, B. and Gandar, R.: Double blind comparison of the effects of Gestanon versus placebo in intra-uterine growth retardation. Presented at the 4th Asia Oceanic Congress on Perinatology, Tokyo, 1986.Google Scholar
  131. Matsuo, H., Maruo, T., Murata, K. and Mochizuki, M.: Human early placental trophoblaste produce an epidermal growth factor-like substance in synergy with thyroid hormone. Acta Endocrinol. (Copenh.) 128: 225–229, 1993.Google Scholar
  132. Moe, N.: Mitotic activity in the syncytiotrophoblast of the human chorionic villi. Am. J. Obstet. Gynecol. 110: 431, 1971.PubMedGoogle Scholar
  133. Moll, W.: Physiologie der maternen plazentaren Durchblutung. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 172–194. Thieme, Stuttgart, 1981.Google Scholar
  134. Montgomery, D. and Young, M.: The uptake of naturally occurring amino acids by the plasma membrane of the human placenta. Placenta 3: 13–20, 1982.PubMedCrossRefGoogle Scholar
  135. Mossman, H.W.: The rabbit placenta and the problem of placental transmission. Am. J. Anat. 37: 433–497, 1926.CrossRefGoogle Scholar
  136. Mossman, H.W.: The principal interchange vessels of the chorioallantoic placenta of mammals. In, Organogenesis. R.L. DeHann and H. Ursprung, eds., pp. 771–786. Holt Rinehart & Winston, New York, 1965.Google Scholar
  137. Mühlhauser, J., Crescimanno, C., Kaufmann, P., Höfler, H., Zaccheo, D. and Castellucci, M.: Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41: 165–173, 1993.PubMedCrossRefGoogle Scholar
  138. Myers, R.E. and Panigel, M.: Experimental placental detachment in the rhesus monkey: changes in villous ultrastructure. J. Med. Primatol. 2: 170–189, 1973.PubMedGoogle Scholar
  139. Naeye, R.L., Maisels, J., Lorenz, R.P. and Botti, J.J.: The clinical significance of placental villous edema. Pediatrics 71: 588–594, 1983.PubMedGoogle Scholar
  140. Nikolov, S.D. and Schiebler, T.H.: Über das fetale Gefäßsystem der reifen menschlichen Plazenta. Z. Zellforsch. 139: 333–350, 1973.PubMedCrossRefGoogle Scholar
  141. Nikolov, S.D. and Schiebler, T.H.: Über Endothelzellen in Zottengefäßen der reifen menschlichen Plazenta. Acta Anat. (Basel) 110: 338–344, 1981.Google Scholar
  142. Ogawa, S., Leavy, J., Clauss, M., Koga, S., Shreeniwas, R., Joseph-Silverstein, J., Furie, M. and Stern, D.: Modulation of endothelial cell (EC) function in hypoxia: alterations in cell growth and the response to monocyte-derived mitogenic factors. J. Cell. Biochem. Suppl. 15F: 213, 1991.Google Scholar
  143. O’Neill, J.E.G.: Vascularizacao da placenta humana. Thesis, Universidade Nova de Lisboa, Portugal, 1983.Google Scholar
  144. Ong, P.J. and Burton, G.J.: Thinning of the placental villous membrane during maintenance in hypoxic organ culture: structural adaptation or syncytial degeneration ? Eur. J. Obstet. Gynecol. Reprod. Biol. 39: 103–110, 1991.PubMedCrossRefGoogle Scholar
  145. Panigel, M. and Myers, R.E.: The effect of fetectomy and ligature of the interplacental fetal vessels on the ultrastructure of placental villosities in Macaca mulatta. C.R. Acad. Sci. Hebd. Seances Acad. Sci. Ser. D 272: 315–318, 1971.Google Scholar
  146. Panigel, M. and Myers, R.E.: Histological and ultrastructural changes in rhesus monkey placenta following interruption of fetal placental circulation by fetectomy or interplacental umbilical vessel ligation. Acta Anat. (Basel) 81: 481–506, 1972.Google Scholar
  147. Panigel, M. and Pascaud, M.: Les orifices artériels d’entrée du sang maternel dans la chambre intervilleuse du placenta humain. Bull. Assoc. Anat. 142: 1287–1298, 1968.Google Scholar
  148. Papierowski, Z.: Effects of selected progestagens used for the protection of high-risk pregnancy on the clinical course, morphological changes and proliferative activity of the trophoblast. Ginekol. Pol. 52: 298–303, 1981.PubMedGoogle Scholar
  149. Paprocki, M.: Morphologie und Morphometrie der Zottengefäße der reifen menschlichen Plazenta nach vorzeitigem Blasensprung. Med. Thesis, Technical University of Aachen, 1992.Google Scholar
  150. Penfold, P., Wootton, R. and Hytten, P.E.: Studies of a single placental cotyledon in vitro. III. The dimensions of the villous capillaries. Placenta 2: 161–168, 1981.PubMedCrossRefGoogle Scholar
  151. Pilz, I., Schweikhart, G. and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. III. Morphometrische Untersuchungen bei Rh-Inkompatibilität. Arch. Gynecol. Obstet. 229: 137–154, 1980.Google Scholar
  152. Piotrowicz, B., Niebroj, T.K. and Sieron, G.: The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem. Cytochem. 7: 436–444, 1969.Google Scholar
  153. Prager, D., Weber, M.M. and Herman-Bonert, V.: Placental growth factors and releasing/inhibiting peptides. Semin Reprod. Endocrinol. 10 (2): 83–94, 1992.Google Scholar
  154. Ramsey, E.M., Corner, G.W. and Donner, M.W.: Serial and cineradioangiographic visualization of maternal circulation in the primate (hemochorial) placenta. Am. J. Obstet. Gynecol. 86: 213–225, 1963.PubMedGoogle Scholar
  155. Rao, C.V., Ramani, N., Chegini, N., Stadig, B.K., Carman, RR., Jr., Woost, P.G., Schultz, G.S. and Cook, C.L.: Topography of human placental receptors for epidermal growth factor. J. Biol. Chem. 260: 1705–1710, 1985.PubMedGoogle Scholar
  156. Reshetnikova, O.S., Burton, G.J. and Milovanov, A.P.: The effects of hypobaric hypoxia on the terminal villi of the human placenta. J. Physiol. 459: 308P, 1993.Google Scholar
  157. Reynolds, L.P., Killilea, S.D. and Redmer, D.A.: Angiogenesis in the female reproductive system. FASEB J. 6: 886–892, 1992.PubMedGoogle Scholar
  158. Rhodin, J.A.G.: The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18: 181–223, 1967.PubMedCrossRefGoogle Scholar
  159. Rhodin, J.A.G.: Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J. Ultrastruct. Res. 25: 452–500, 1968.PubMedCrossRefGoogle Scholar
  160. Rifkin, D.B. and Moscatelli, D.: Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol. 109: 1–6, 1989.PubMedCrossRefGoogle Scholar
  161. Rodesch, E, Simon, P., Donner, C. and Jauniaux, E.: Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 80: 283–285, 1992.PubMedGoogle Scholar
  162. Rossi, P., Karsenty, G., Roberts, A.B., Roche, N.S., Sporn, M.B. and De Crombrugghe, B.: A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-ß. Cell 52: 405–414, 1988.PubMedCrossRefGoogle Scholar
  163. Salvatore, C.A.: The placenta in acute toxemia. Am. J. Obstet. Gynecol. 102: 347–352, 1968.PubMedGoogle Scholar
  164. Scheffen, I., Kaufmann, P., Philippens, L., Leiser, R., Geisen, C. and Mottaghy, K.: Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia. In, Oxygen Transfer to Tissue, XII. J. Piiper, T.K. Goldstick and D. Meyer, eds., pp. 779–790. Plenum Press, New York, 1990.Google Scholar
  165. Schiebler, T.H. and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 51–111. Thieme, Stuttgart, 1981.Google Scholar
  166. Schmid-Schönbein, H.: Conceptional proposition for a specific microcirculatory problem: maternal blood flow in hemochorial multivillous placentae as percolation of a “porous medium.” Trophoblast Res. 3: 17–38, 1988.Google Scholar
  167. Schmidt, J.A., Mizel, S.B., Cohen, D. and Green, I.: Interleukin 1: a potential regulator of fibroblast proliferation. J. Immunol. 128: 2177–2182, 1982.PubMedGoogle Scholar
  168. Schmon, B., Hartmann, M., Jones, C.J. and Desoye, G.: Insulin and glucose do not affect the glycogen content in isolated and cultured trophoblast cells of human term placenta. J. Clin. Endocrinol. Metab. 73: 888–893, 1991.PubMedCrossRefGoogle Scholar
  169. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomie. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler and F. Kubli, eds., pp. 199–207. Thieme Verlag, Stuttgart, 1981.Google Scholar
  170. Schuhmann, R. and Wehler, V.: Histologische Unterschiede an Plazentazotten innerhalb der materno-fetalen Strömungseinheit. Ein Beitrag zur funktionellen Morphologie der Plazenta. Arch. Gynäkol. 210: 425–439, 1971.PubMedCrossRefGoogle Scholar
  171. Schuhmann, R., Kraus, H., Borst, R. and Geier, G.: Regional unterschiedliche Enzymaktivität innerhalb der Placentone reifer menschlicher Placenten. Histochemische und biochemische Untersuchungen. Arch. Gynäkol. 220: 209–226, 1976.PubMedCrossRefGoogle Scholar
  172. Schweikhart, G. and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Ultrastruktur des Syncytiotrophoblasten. Arch. Gynäkol. 222: 213–230, 1977.PubMedCrossRefGoogle Scholar
  173. Scott, W.A. and Cohn, Z.A.: Secretory products of mononuclear phagocytes. In, Pathobiology of the Endothelial Cell. H.L. Nossel and H.J. Vogel, eds., pp. 240–258. Raven Press, New York, 1982.Google Scholar
  174. Sen, D.K., Kaufmann, P. and Schweikhart, G.: Classification of human placental villi. II. Morphometry. Cell Tissue Res. 200: 425–434, 1979.Google Scholar
  175. Shalaby, E, Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.-F., Breitman, M. and Schuh, A.C.: Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature (Lond.) 376: 62–66, 1995.CrossRefGoogle Scholar
  176. Shams, M. and Ahmed, A.: Localization of mRNA for basic fibroblast growth factor in human placenta. Growth Factors 11: 105–111, 1994.PubMedCrossRefGoogle Scholar
  177. Sharkey, A.M., Charnock-Jones, D.S., Boocock, C.A., Brown, K.D. and Smith, S.K.: Expression of mRNA for vascular endothelial growth factor in human placenta. J. Reprod. Fertil. 99: 609–615, 1993.PubMedCrossRefGoogle Scholar
  178. Shiraishi, S., Nakagawa, K., Kinukawa, N., Nakano, H. and Sueishi, K.: Immunohistochemical localization of vascular endothelial growth factor in the human placenta. Placenta 17: 111–121, 1996.PubMedCrossRefGoogle Scholar
  179. Shore, V.H., Wang, T.H., Wang, C.L., Torry, R.J., Caudle, M.R. and Torry, D.S.: Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 18: 657–665, 1997.PubMedCrossRefGoogle Scholar
  180. Shorter, S., Clover, L. and Starkey, P.: Evidence for both an autocrine and paracrine role for the colony-stimulating factors in regulating placental growth and development. Placenta 13: A58, 1992.CrossRefGoogle Scholar
  181. Shreeniwas, R., Ogawa, S., Cozzolino, E, Torcia, G., Braunstein, N., Butura, C., Brett, J., Lieberman, H.B., Furie, M.B. and Joseph-Silverstein, J.: Macrovascular and microvascular endothelium during long-term hypoxia: alterations in cell growth, monolayer permeability, and cell surface coagulant properties. J. Cell. Physiol. 146: 8–17, 1991.PubMedCrossRefGoogle Scholar
  182. Strauss, D.S.: Growth-stimulatory actions of insulin in vitro and in vivo. Endocr. Rev. 5: 356–369, 1984.CrossRefGoogle Scholar
  183. Takemura, R. and Werb, Z.: Secretory products of macrophages and their physiological functions. Am. J. Physiol. 246: C1 — C9, 1984.PubMedGoogle Scholar
  184. Tedde, G. and Tedde-Piras, A.: Mitotic index of the Langhans’ cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat. (Basel) 100: 114–119, 1978.Google Scholar
  185. Thiriot, M. and Panigel, M.: Microcirculation. La microvascularisation des villosites placentaires humaines. C.R. Acad. Sci. D 287: 709–712, 1978.Google Scholar
  186. Thorpe Beeston, J.G., Nicolaides, K.H., Snijders, R.J., Felton, C.V. and McGregor, A.M.: Thyroid function in small for gestational age fetuses. Obstet. Gynecol. 77: 701–706, 1991.PubMedGoogle Scholar
  187. Tominaga, T. and Page, E.W.: Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gyneco1. 94: 679–691, 1966.Google Scholar
  188. Voigt, S., Kaufmann, P. and Schweikhart, G.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. II. Morphometrische Untersuchungen zum Einfluss des Fixationsmodus. Arch. Gynäkol. 226: 347–362, 1978.Google Scholar
  189. Vuckovic, M., Ponting, J., Terman, B.I., Niketic, V., Seif, M.W. and Kumar, S.: Expression of the vascular endothelial growth factor receptor, KDR, in human placenta. J. Anat. 188: 361–366, 1996.PubMedGoogle Scholar
  190. Vuorela, E, Hatva, E., Lymboussaki, A., Kaipainen, A., Joukov, V. and Persico, M.G.: Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol. Reprod. 56: 489–494, 1997.PubMedCrossRefGoogle Scholar
  191. Wallenburg, H.C.S., Hutchinson, D.L., Schuler, H.M., Stolte, L.A.M. and Janssens, J.: The pathogenesis of placental infarction. II. An experimental study in the rhesus monkey. Am. J. Obstet. Gynecol. 116: 841–846, 1973.PubMedGoogle Scholar
  192. Werb, Z.: How the macrophage regulates its extracellular environment. Am. J. Anat. 166: 237–256, 1983.PubMedCrossRefGoogle Scholar
  193. Werner, C. and Schneiderhan, W.: Plazentamorphologie und Plazentafunktion in Abhängigkeit von der diabetischen Stoffwechselführung. Geburtsh. Frauenheilkde 32: 959–966, 1972.Google Scholar
  194. Wheeler, T., Elcock, C.L. and Anthony, F.W.: Angiogenesis and the placental environment. Placenta 16:289-296,1995.Google Scholar
  195. Widmaier, G.: Zur Ultrastruktur menschlicher Placentazotten beim Diabetes mellitus. Arch. Gynäkol. 208: 396–409, 1970.PubMedCrossRefGoogle Scholar
  196. Wigglesworth, J.S.: Vascular organization of the human placenta. Nature (Lond.) 216: 1120–1121, 1967.CrossRefGoogle Scholar
  197. Wilkin, P.: Pathologie du Placenta. Masson, Paris, 1965.Google Scholar
  198. Wilting, J., Birkenhäger, R., Eichmann, A., Kurs, H., MartinyBaron, G., Marme, D., McCarthy, J.E.G., Christ, B. and Weich, H.A.: VEGF(121) induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of the chorioallantoic membrane. Dev. Biol. 176: 76–85, 1996.PubMedCrossRefGoogle Scholar
  199. Wilting, J., Birkenhäger, R., Martiny-Baron, G., Marmé, D., Christ, B., Eichmann, A. and Weich, H.A.: Vascular endotheliai growth factor (VEGF) and placenta growth factor (PIGF): homologous factors specifically affecting endothelial cells. Ann. Anat. 178: 331A, 1995.Google Scholar
  200. Yallampalli, C. and Garfield, R E Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 169: 1316–1320, 1993.Google Scholar
  201. Zeek, P.M. and Assali, N.S.: Vascular changes in the decidua associated with eclamptogenic toxemia of pregnancy. Am. J. Clin. Pathol. 20: 1099–1109, 1950.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Peter Kaufmann
    • 2
  1. 1.University Medical CenterUniversity of California, San DiegoSan DiegoUSA
  2. 2.Institut für Anatomie der Medizinischen FakultätRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations