Advertisement

Basic Structure of the Villous Trees

  • M. Castellucci
  • P. Kaufmann

Abstract

Nearly all maternofetal and fetomaternal exchange takes place in the placental villi. There is only a limited contribution by the extraplacental membranes. In addition, most metabolic and endocrine activities of the placenta have been localized in the villi (for review see Gröschel-Stewart, 1981; Miller & Thiede, 1984; Knobil & Neill, 1993).

Keywords

Human Placenta Chorionic Villus Placental Villus Villous Tree Intervillous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acconci, G.: Mola vesicolare destruente e corioepitelioma. Folia Ginecol. (Genoa) 21: 253–268, 1925.Google Scholar
  2. Adamson, E.D.: Review article: expression of protooncogenes in the placenta. Placenta 8: 449–466, 1987.PubMedCrossRefGoogle Scholar
  3. Akiyama, S.K., Nagata, K., and Yamada, K.M.: Cell surface receptors for extracellular matrix components. Biochim. Biophys. Acta 1031: 91–110, 1990.PubMedCrossRefGoogle Scholar
  4. Albe, K.R., Witkin, H.J., Kelley, L.K., and Smith, C.H.: Protein kinases of the human placental microvillous membrane. Exp. Cell Res. 147: 167–176, 1983.PubMedCrossRefGoogle Scholar
  5. Alsat, E., Mondon, F., Rebourcet, R., Berthelier, M., Ehrlich, D., Cedard, L., and Goldstein, S.: Identification of specific binding sites for acetylated low density lipoprotein in microvillous membranes from human placenta. Mol. Cell. Endocrinol. 41: 229–235, 1985.PubMedCrossRefGoogle Scholar
  6. Alvarez, H.: Proliferation du trophoblaste et sa relation avec l’hypertension arterielle de la toxemie gravidique. Gynecol. Obstet. (Paris) 69: 581–588, 1970.Google Scholar
  7. Alvarez, H., Benedetti, W.L., Morel., R.L., and Scavarelli, M.: Trophoblast development gradient and its relationship to placental hemodynamics. Am. J. Obstet. Gynecol. 106: 416–420, 1970.PubMedGoogle Scholar
  8. Alvarez, H., Medrano, C.V., Sala, M.A., and Benedetti, W.L.: Trophoblast development gradient and its relationship to placental hemodynamics. II. Study of fetal cotyledons from the toxemic placenta. Am. J. Obstet. Gynecol. 114: 873–878, 1972.PubMedGoogle Scholar
  9. Al-Zuhair, A.G.H., Ibrahim, M.E.H., Mughal, S., and Mohammed, M.E.: Scanning electron microscopy of maternal blood cells and their surface relationship with the placenta. Acta Obstet. Gynecol. Scand. 62: 493–498, 1983.CrossRefGoogle Scholar
  10. Al-Zuhair, A.G.H., Ibrahim, M.E.A., Mughal, S., and Abdulla, M.A.: Loss and regeneration of the microvilli of human placental syncytiotrophoblast. Arch. Gynecol. 240: 147–151, 1987.PubMedCrossRefGoogle Scholar
  11. Amalados, A.S., and Burton, G.J.: Organ culture of human placental villi in hypoxic and hyperoxic conditions: a morphometric study. J. Dev. Physiol. 7: 113–118, 1985.Google Scholar
  12. Amenta, P.S., Gay, S., Vaheri, A., and Martinez-Hernandez, A.: The extracellular matrix is an integrated unit: ultrastructural localization of collagen types I, III, IV, V, VI, fibronectin, and laminin in human term placenta. Collagen Relat. Res. 6: 125–152, 1986.Google Scholar
  13. Amstutz, E.: Beobachtungen über die Reifung der Chorionzotten in der menschlichen Placenta mit besonderer Berücksichtigung der Epithelplatten. Acta Anat. (Basel) 42: 122–130, 1960.Google Scholar
  14. Arnholdt, H., Meisel, F., Fandrey, K., and Löhrs, U.: Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch B Cell Pathol. 60: 365–372, 1991.CrossRefGoogle Scholar
  15. Arnold, M., Geller, H., and Sasse, D.: Beitrag zur elektronenmikroskopischen Morphologie der menschlichen Plazenta. Arch. Gynecol. 196: 238–253, 1961.Google Scholar
  16. Astedt, B., Hägerstrand, I., and Lecander, I.: Cellular localisation in placenta of placental type plasminogen activator inhibitor. Thromb. Haemost. 56: 63–65, 1986.PubMedGoogle Scholar
  17. Aufderheide, E., and Ekblom, P.: Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J. Cell Biol. 107: 2341–2349, 1988.PubMedCrossRefGoogle Scholar
  18. Autio-Harmainen, H., Sandberg, M., Pihlajaniemi, T., and Vuorio, E.: Synthesis of laminin and type IV collagen by trophoblastic cells and fibroblastic stromal cells in the early human placenta. Lab. Invest. 64: 483–491, 1991.PubMedGoogle Scholar
  19. Autio-Harmainen, H., Hurskainen, T., Niskasaari, K., Höyhtyä, M., and Tryggvason, K.: Simultaneous expression of 70 kilodalton type IV collagenase and type IV collagen al(IV) chain genes by cells of early human placenta and gestational endometrium. Lab. Invest. 67: 191–200, 1992.PubMedGoogle Scholar
  20. Baker, B.L., Hook, S.J., and Severinghaus, A.E.: The cytological structure of the human chorionic villus and decidua parietalis. Am. J. Anat. 74: 291–325, 1944.CrossRefGoogle Scholar
  21. Bargmann, W., and Knoop, A.: Elektronenmikroskopische Untersuchungen an Plazentarzotten des Menschen: Bemerkungen zum Synzytiumproblem. Z. Zellforsch. 50: 472–493, 1959.PubMedCrossRefGoogle Scholar
  22. Bautzmann, H., and Schröder, R.: Über Vorkommen und Bedeutung von “Hofbauerzellen” ausserhalb der Placenta. Arch. Gynecol. 187: 65–76, 1955.Google Scholar
  23. Beck, T., Schweikhart, G., and Stolz, E • Immunohistochemical location of hPL, SPI and 0-hCG in normal placentas of varying gestational age. Arch. Gynecol. 239: 63–74, 1986.PubMedCrossRefGoogle Scholar
  24. Becker, V.: Gefäße der Chorionplatte und Stammzotten. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., Thieme Verlag, Stuttgart, 1981.Google Scholar
  25. Becker, V., and Bleyl, U.: Placentarzotte bei Schwangerschaftstoxicose und fetaler Erythroblastose im fluorescenzmikroskopischen Bilde. Virchows Arch. Pathol. Anat. 334: 516–527, 1961.Google Scholar
  26. Becker, V., and Röckelein, G., eds.: Pathologie der weiblichen Genitalorgane. Springer-Verlag, Heidelberg, 1989.Google Scholar
  27. Becker, V., and Seifert, K.: Die Ultrastruktur der Kapillarwand in der menschlichen Placenta zur Zeit der Schwangerschaftsmitte. Z. Zellforsch. 65: 380–396, 1965.PubMedCrossRefGoogle Scholar
  28. Beham, A., Denk, H., and Desoye, G.: The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9: 479–492, 1988.PubMedCrossRefGoogle Scholar
  29. Benirschke, K., and Bourne, G.L.: Plasma cells in immature human placenta. Obstet. Gynecol. 12: 495–503, 1958.PubMedGoogle Scholar
  30. Benirschke, K., and Driscoll, S.G.: The Pathology of the Human Placenta. Springer-Verlag, New York, 1967.Google Scholar
  31. Ben-Ze’ev, A.: The relationship between cytoplasmic organization, gene expression and morphogenesis. Trends Biochem. Sci. 11: 478–481, 1986.Google Scholar
  32. Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D., and Robey, P.G.: Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38: 1549–1563, 1990.PubMedCrossRefGoogle Scholar
  33. Bierings, M.B.: Placental iron uptake and its regulation. Medical thesis, University of Rotterdam, 1989.Google Scholar
  34. Bischof, P., and Martelli, M.: Proteolysis in the penetration phase of the implantation process. Placenta 13: 17–24, 1992.PubMedCrossRefGoogle Scholar
  35. Bischof, P. Friedli, E., Martelli, M., and Campana, A.: Expression of extracellular matrix degrading metalloproteinases by cultured human cytotrophoblast cells: effects of cell adhesion and immunopurification. Am. J. Obstet. Gynecol. 165: 1791–1801, 1991.Google Scholar
  36. Blay, J., and Hollenberg, M.D.: The nature and function of polypeptide growth factor receptors in the human placenta. J. Dev. Physiol. 12: 237–248, 1989.PubMedGoogle Scholar
  37. Bleyl, U.: Histologische, histochemische und fluoreszenzmikroskopische Untersuchungen an Hofbauer-Zellen. Arch. Gynecol. 197: 364–386, 1962.Google Scholar
  38. Boehm, K.D., Kelley, M.F., and Ilan, J.: Expression of insulin-like growth factors by the human placenta. In, Molecular and Cellular Biology of Insulin-Like Growth Factors and Their Receptors. D. Leroith and M.K. Raizada, eds., pp. 179–193. Plenum, New York, 1989a.Google Scholar
  39. Boehm, K.D., Kelley, M.F., Ilan, J., and Ilan, J.: The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc. Natl. Acad. Sci. U.S.A. 86: 656–660, 1989b.PubMedCrossRefGoogle Scholar
  40. Boime, I., Otani, T., Otani, F., Daniels-McQueen, S., and Bo, M.: Factors regulating peptide hormone biosynthesis in human placenta. In, Abstracts of the 11th Rochester Trophoblast Conference, Rochester, N.Y., p. 1, 1988.Google Scholar
  41. Borst, R., Kussäther, E., and Schuhmann, R.: Ultrastrukturelle Untersuchungen zur Verteilung der alkalischen Phosphatase im Placenton (maternofetale Strömungseinheit) der menschlichen Placenta. Arch. Gynecol. 215: 409–415, 1973.Google Scholar
  42. Boume, G.: The Human Amnion and Chorion. Lloyd-Luke, London, 1962.Google Scholar
  43. Boyd, J.D., and Hamilton, W.J.: Electron microscopic observations on the cytotrophoblast contribution to the syncytium in the human placenta. J. Anat. 100: 535–548, 1966.PubMedGoogle Scholar
  44. Boyd, J.D., and Hamilton, W.J.: Development and structure of the human placenta from the end of the 3rd month of gestation. J. Obstet. Gynaecol. Br. Commonw. 74: 161–226, 1967.PubMedCrossRefGoogle Scholar
  45. Boyd, J.D., and Hughes, A.F.W.: Etude des villosites placentaires au moyen du microscope electronique. In, 6th Congress, International Federation of Anatomists. Abstract 32, Masson, Paris, 1955.Google Scholar
  46. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heffer and Sons, Cambridge, 1970.Google Scholar
  47. Boyd, J.D., Boyd, C.A.R., and Hamilton, W.J.: Observations on the vacuolar structure of the human syncytiotrophoblast. Z. Zellforsch. 88: 57–79, 1968a.PubMedCrossRefGoogle Scholar
  48. Boyd, J.D., Hamilton, W.J., and Boyd, C.A.R.: The surface of the syncytium of the human chorionic villus. J. Anat. 102: 553–563, 1968b.PubMedGoogle Scholar
  49. Bradbury, S., Billington, W.D., Kirby, D.R.S., and Williams, E.A.: Surface mucin of human trophoblast. Am. J. Obstet. Gynecol. 104: 416–418, 1969.PubMedGoogle Scholar
  50. Bradbury, S., Billington, W.D., Kirby, D.R.S., and Williams, E.A.: Histochemical characterization of the surface muco-protein of normal and abnormal human trophoblast. Histochem. J. 2: 263–274, 1970.PubMedCrossRefGoogle Scholar
  51. Braunhut, S.J., Blanc, W.A., Ramanarayanan, M., Marboe, C., and Mesa-Tejada, R.: Immunocytochemical localization of lysozyme and alpha-1-antichymotrypsin in the term human placenta: an attempt to characterize the Hofbauer cell. J. Histochem. Cytochem. 32: 1204–1210, 1984.PubMedCrossRefGoogle Scholar
  52. Bray, B.A.: Presence of fibronectin in basement membranes and acidic structural glycoproteins from human placenta and lung. Ann. N. Y. Acad. Sci. 312: 142–150, 1978.PubMedCrossRefGoogle Scholar
  53. Bremer, J.L.: The interrelations of the mesonephros, kidney and placenta in different classes of mammals. Am. J. Anat. 19: 179–209, 1916.CrossRefGoogle Scholar
  54. Bright, N.A., and Ockleford, C.D.: Fc-T receptor bearing cells in human term amniochorion. J. Anat. 183: 187–188, 1993.Google Scholar
  55. Brown, P.J., and Johnson, P.M.: Isolation of a transferrin receptor structure from sodium deoxycholate-solubilized human placental syncytiotrophoblast plasma. Placenta 2: 1–10, 1981.PubMedCrossRefGoogle Scholar
  56. Bryant-Greenwood, G.D., Rees, M.C.P., and Turnbull, A C • Immunohitochemical localization of relaxin, prolactin and prostaglandin synthetase in human amnion, chorion and decidua. J. Endocrinol. 114: 491–496, 1987.PubMedCrossRefGoogle Scholar
  57. Buckley, P.J., Smith, M.R., Broverman, M.F., and Dickson, S.A.: Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations. Am. J. Pathol. 128: 505–520, 1987.PubMedGoogle Scholar
  58. Bulmer, J.N., and Johnson, P.M.: Macrophage populations in the human placenta and amniochorion. Clin. Exp. Immunol. 57: 393–403, 1984.PubMedGoogle Scholar
  59. Bulmer, J.N., Morrison, L., and Smith, J.C.: Expression of class II MHC gene products by macrophages in human uteroplacental tissue. Immunology 63: 707–714, 1988.PubMedGoogle Scholar
  60. Bulmer, J.N., Thrower, S., and Wells, M.: Expression of epidermal growth factor receptor and transferrin receptor by human trophoblast populations. Am. J. Reprod. Immunol. 21: 87–93, 1989.PubMedGoogle Scholar
  61. Burgos, M.H., and Rodriguez, E.M.: Specialized zones in the trophoblast of the human term placenta. Am. J. Obstet. Gynecol. 96: 342–356, 1966.PubMedGoogle Scholar
  62. Burstein, R., Berns, A.W., Hirata, Y., and Blumenthal, H.T.: A comparative histo-and immunopathological study of the placenta in diabetes mellitus and in erythroblastosis fetalis. Am. J. Obstet. Gynecol. 86: 66–76, 1963.PubMedGoogle Scholar
  63. Burstein, R., Frankel, S., Soule, S.D., and Blumenthal, H.T.: Ageing in the placenta: autoimmune theory of senescence. Am. J. Obstet. Gynecol. 116: 271–274, 1973.PubMedGoogle Scholar
  64. Burton, G.J.: Intervillous connections in the mature human placenta: instances of syncytial fusion or section artifacts ? J. Anat. 145: 13–23, 1986a.PubMedGoogle Scholar
  65. Burton, G.J.: Scanning electron microscopy of intervillous connections in the mature human placenta. J. Anat. 147: 245–254, 1986b.PubMedGoogle Scholar
  66. Burton, G.J.: The fine structure of the human placental villus as revealed by scanning electron microscopy. Scanning Electron Microsc. 1: 1811–1828, 1987.Google Scholar
  67. Burton, G.J., Mayhew, T.M., and Robertson, L.A.: Stereo-logical re-examination of the effects of varying oxygen tensions on human placental villi maintained in organ culture for up to 12 h. Placenta 10: 263–273, 1989.PubMedCrossRefGoogle Scholar
  68. Cantle, S.J., Kaufmann, P., Luckhardt, M., and Schweikhart, G.: Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8: 221–234, 1987.PubMedCrossRefGoogle Scholar
  69. Carter, J.E.: The ultrastructure of the human trophoblast. Transcript 2nd Rochester Trophoblast Conference. C.J. Lund and H.A. Thiede, eds., 1963.Google Scholar
  70. Carter, J.E.: Morphologic evidence of syncytial formation from the cytotrophoblastic cells. Obstet. Gynecol. 23: 647–656, 1964.PubMedGoogle Scholar
  71. Castellucci, M., and Kaufmann, P.: A three-dimensional study of the normal human placental villous core. II. Stromal architecture. Placenta 3: 269–285, 1982a.PubMedCrossRefGoogle Scholar
  72. Castellucci, M., and Kaufmann, P.: Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl. Anat. 22: 40–45, 1982b.PubMedGoogle Scholar
  73. Castellucci, M., Zaccheo, D., and Pescetto, G.: A three-dimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res. 210: 235–247, 1980.PubMedCrossRefGoogle Scholar
  74. Castellucci, M., Schweikhart, G., Kaufmann, P., and Zaccheo, D.: The stromal architecture of immature intermediate villus of the human placenta: functional and clinical implications. Gynecol. Obstet. Invest. 18: 95–99, 1984.PubMedCrossRefGoogle Scholar
  75. Castellucci, M., Richter, A., Steininger, B., Celona, A., and Schneider, J.: Light and electron microscopy identification of mitotic Hofbauer cells in the human placenta. Arch. Gynecol. 237 (Suppl.): 235, 1985.Google Scholar
  76. Castellucci, M., Celona, A., Bartels, H., Steininger, B., Benedetto, V., and Kaufmann, P.: Mitosis of the Hofbauer cell: possible implications for a fetal macrophage. Placenta 8: 65–76, 1987.PubMedCrossRefGoogle Scholar
  77. Castellucci, M., and Zaccheo, D.: The Hofbauer cells of the human placenta: morphological and immunological aspects. Prog. Clin. Biol. Res. 269: 443–451, 1989.Google Scholar
  78. Castellucci, M., Kaufmann, P., and Bischof, P.: Extracellular matrix influences hormone and protein production by human chorionic villi. Cell Tissue Res. 262: 135–142, 1990a.PubMedCrossRefGoogle Scholar
  79. Castellucci, M., Mühlhauser, J., and Zaccheo, D.: The Hofbauer cell: the macrophage of the human placenta. In, Immunobiology of Normal and Diabetic Pregnancy. D. Andreani, G. Bompiani, U. Di Mario, W.P. Faulk, and A. Galluzzo, eds., pp. 135–144. Wiley and Sons, Chichester, 1990b.Google Scholar
  80. Castellucci, M., Scheper, M., Scheffen, I., Celona, A., and Kaufmann, P.: The development of the human placental villous tree. Anat. Embryol. (Berl.) 181: 117–128, 1990c.CrossRefGoogle Scholar
  81. Castellucci, M., Classen-Linke, I., Mühlhauser, J., Kaufmann, P., Zardi, L., and Chiquet-Ehrismann, R.: The human placenta: a model for tenascin expression. Histochemistry 95: 449–458, 1991.PubMedCrossRefGoogle Scholar
  82. Castellucci, M., Crescimanno, C., Mühlhauser, J., Frank, H.G., Kaufmann, P., and Zardi, L.: Expression of extracel-lular matrix molecules related to placental development. Placenta 14: A9, 1993a.CrossRefGoogle Scholar
  83. Castellucci, M., Crescimanno, C., Schroeter, C.A., Kaufmann, P., and Mühlhauser, J.: Extravillous trophoblast: immunohistochemical localization of extracellular matrix molecules. In, Frontiers in Gynecologic and Obstetric Investigation. A.R. Genazzani, F. Petraglia, A.D. Genazzani, eds., pp. 19–25. Parthenon, New York, 1993b.Google Scholar
  84. Chaletzky, E.: Hydatidenmole. Thesis, University of Bern, 1891.Google Scholar
  85. Chard, T.: Placental radar. J. Endocrinol. 138: 177–179, 1993.PubMedCrossRefGoogle Scholar
  86. Chegini, N., and Rao, CH.V.: Epidermal growth factor binding to human amnion, chorion, decidua, and placenta from mid-and term pregnancy: quantitative light microscopic autoradiographic studies. J. Clin. Endocrinol. Metab. 61: 529–535, 1985.PubMedCrossRefGoogle Scholar
  87. Chen, C.-F., Kurachi, H., Fujita, Y., Terakawa, N., Miyake, A., and Tanizawa, O.: Changes in epidermal growth factor receptor and its messenger ribonucleic acid levels in human placenta and isolated trophoblast cells during pregnancy. J. Clin. Endocrinol. Metab. 67: 1171–1177, 1988.PubMedCrossRefGoogle Scholar
  88. Chwalisz, K., Ciesla, I., and Garfield, R E • Inhibition of nitric oxide (NO) synthesis induces preterm parturition and preeclampsia-like conditions in guinea pigs. Society for Gynecologic Investigation Meeting, 1994.Google Scholar
  89. Clavero-Nunez, J.A., and Botella-Llusia, J.: Measurement of the villus surface in normal and pathologic placentas. Am. J. Obstet. Gynecol. 86: 234–240, 1961.Google Scholar
  90. Contractor, S.F.: Lysosomes in human placenta. Nature 223: 1274–1275, 1969.PubMedCrossRefGoogle Scholar
  91. Contractor, S.F., Banks, R.W., Jones, C.J.P., and Fox, H.: A possible role for placental lysosomes in the formation of villous syncytiotrophoblast. Cell Tissue Res. 178: 411–419, 1977.PubMedCrossRefGoogle Scholar
  92. Corte, G., Moretta, A., Cosulich, M.E., Ramarli, D., and Bargellesi, A.: A monoclonal anti-DC1 antibody selectively inhibits the generation of effector T cells mediating specific cytolytic activity. J. Exp. Med. 156: 1539–1544, 1982.PubMedCrossRefGoogle Scholar
  93. Crisp, T.M., Dessouky, D.A., and Denys, F.R.: The fine structure of the human corpus luteum of early pregnancy and during the progestational phase of the menstrual cycle. Am. J. Anat. 127: 37–70, 1970.PubMedCrossRefGoogle Scholar
  94. Cuthbert, P., Sedmak, D., Morgan, C., Lairmore, M., and Anderson, C.: Placental syncytiotrophoblasts do not express CD4 antigen or MRNA [abstract]. Mod. Pathol. 5: 91A, 1992.Google Scholar
  95. Damsky, C.H., Fitzgerald, M.L., and Fisher, S.J.: Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clin. Invest. 89: 210–222, 1992.PubMedCrossRefGoogle Scholar
  96. Daughaday, W.H., Mariz, I.K., and Trivedi, B.: A preferential binding site for insulin-like growth factor II in human and rat placental membranes. J. Clin. Endocrinol. Metab. 53: 282–288, 1981.PubMedCrossRefGoogle Scholar
  97. Davidoff, M., and Schiebler, T.H.: Über den Feinbau der Meerschweinchenplacenta während der Entwicklung. Z. Anat. Entwicklungsgesch. 130: 234–254, 1970.PubMedCrossRefGoogle Scholar
  98. De Cecco, L., Pavone, G., and Rolfini, G.: La placenta umana nella isoimmunizzazione anti Rh. Quad. Clin. Ostet. Ginecol. 18: 675–682, 1963.Google Scholar
  99. De Ikonicoff, L.K., and Cedard, L.: Localization of human chorionic gonadotropic and somatomammotropic hormones by the peroxidase immunohisto-enzymologic method in villi and amniotic epithelium of human placenta (from six weeks to term). Am. J. Obstet. Gynecol. 116: 1124 1132, 1973.Google Scholar
  100. Demir, R., and Erbengi, T.: Some new findings about Hofbauer cells in the chorionic villi of the human placenta. Acta Anat. (Basel) 119: 18–26, 1984.Google Scholar
  101. Demir, R., Kaufmann, P., Castellucci, M., Erbengi, T., and Kotowski, A.: Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. (Basel) 136: 190–203, 1989.Google Scholar
  102. Demir, R., Demir, N., Kohnen, G., Kosanke, G., Mironov, V., Üstünel, I., and Kocamaz, E.: Ultrastructure and distribution of myofibroblast-like cells in human placental stem villi. Electron Microsc. 3: 509–510, 1992.Google Scholar
  103. Dempsey, E.W.: The development of capillaries in the villi of early human placentas. Am. J. Anat. 134: 221–238, 1972.PubMedCrossRefGoogle Scholar
  104. Dempsey, E.W., and Luse, S.A.: Regional specializations in the syncytial trophoblast of early human placentas. J. Anat. 108: 545–561, 1971.PubMedGoogle Scholar
  105. Dempsey, E.W., and Zergollern, L.: Zonal regions of the human placenta barrier. Anat. Rec. 163: 177, 1969.Google Scholar
  106. Desoye, G., Hartmann, M., Blaschitz, A., Dohr, G., Hahn, T., Kohnen, G., and Kaufmann, P.: Insulin receptors in syncytiotrophoblast and fetal endothelium of human placenta. Immunohistochemical evidence for developmental changes in distribution pattern. Histochemistry 101: 277285, 1994.Google Scholar
  107. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C., Aaronson, S.A., and Antoniades, H.N.: Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet derived growth factor. Science 221: 275–277, 1983.PubMedCrossRefGoogle Scholar
  108. Dorgan, W.J., and Schultz, R.L.: An in vitro study of programmed death in rat placental giant cells. J. Exp. Zool. 178: 497–512, 1971.PubMedCrossRefGoogle Scholar
  109. Douglas, G.C., and King, B.F.: Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J. Immunol. Methods 119: 259–268, 1989.PubMedCrossRefGoogle Scholar
  110. Dreskin, R.B., Spicer, S.S., and Greene, W.B.: Ultrastructural localization of chorionic gonadotropin in human term placenta. J. Histochem. Cytochem. 18: 862–874, 1970.PubMedCrossRefGoogle Scholar
  111. Duance, V.C., and Bailey, A.J.: Structure of the trophoblast basement membrane. In, Biology of Trophoblast. Y.W. Loke and A. Whyte, eds. Elsevier, Amsterdam, 1983.Google Scholar
  112. Dujardin, M., Robyn, C., and Wilkin, P.: Mise en evidence immuno-histoenzymologique de l’hormone chorionique somatomammotrope (HCS) au niveau des divers constituants cellulaires du placenta humain normal. Biol. Cell 30: 151–154, 1977.Google Scholar
  113. Durst-Zivkovic, B.: Das Vorkommen der Mastzellen in der Nachgeburt. Anat. Anz. 134: 225–229, 1973.PubMedGoogle Scholar
  114. Earl, U., Estlin, C., and Bulmer, J.N.: Fibronectin and laminin in the early human placenta. Placenta 11: 223–231, 1990.PubMedCrossRefGoogle Scholar
  115. Eden, T.W.: A study of the human placenta, physiological and pathological. J. Pathol. Bacteriol. 4: 265–283, 1897.CrossRefGoogle Scholar
  116. Edwards, D., Jones, C.J.P., Sibley, C.P., Farmer, D.R., and Nelson, D.M.: Areas of syncytial denudation may provide routes for paracellular diffusion across the human placenta. Placenta 12: 383, 1991.Google Scholar
  117. Edwards, J.A., Jones, D.B., Evans, P.R., and Smith, J.L.: Differential expression of HLA class II antigens on human fetal and adult lymphocytes and macrophages. Immunology 55: 489–500, 1985.PubMedGoogle Scholar
  118. Emonard, H., Christiane, Y., Smet, M., Grimaud, J.A., and Foidart, J.M.: Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion Metastasis 10: 170–177, 1990.PubMedGoogle Scholar
  119. Enders, A.C., and King, B.F.: The cytology of Hofbauer cells. Anat. Rec. 167: 231–252, 1970.PubMedCrossRefGoogle Scholar
  120. Fant, M.E.: In vitro growth rate of placental fibroblasts is developmentally regulated. J. Clin. Invest. 88: 1697–1702, 1991.PubMedCrossRefGoogle Scholar
  121. Faulk, P., Trenchev, P., Dorling, J., and Holborow, J.: Antigens on post-implantation placentae. In, Immunobiology of Trophoblast. R.G. Edwards, C.W.S. Howe, and M.H. Johnson, eds. Cambridge University Press, Cambridge, 1975.Google Scholar
  122. Faulk, W.P., Jarret, R., Keane, M., Johnson, P.M., and Boackle, R J • Immunological studies of human placentae: complement components in immature and mature chorionic villi. Clin. Exp. Immunol. 40: 299–305, 1980.Google Scholar
  123. Feinberg, R.F., Kao, L -C, Haimowitz, J.E., Queenan, J.T., Jr., Wun, T.-C., Strauss, J.F., III, and Kliman, H.J.: Plasminogen activator inhibitor types 1 and 2 in human trophoblasts. PAI-1 is an immunocytochemical marker of invading trophoblasts. Lab. Invest. 61: 20–26, 1989.PubMedGoogle Scholar
  124. Feinberg, R.F., Kliman, H.J., and Lockwood, C.J.: Is oncofetal fibronectin a trophoblast glue for human implantation ? Am. J. Pathol. 138: 537–543, 1991.PubMedGoogle Scholar
  125. Feller, A.C., Schneider, H., Schmidt, D., and Parwaresch, M.R.: Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta 6: 405–415, 1985.PubMedCrossRefGoogle Scholar
  126. Firth, J.A., Farr, A., and Bauman, K.: The role of gap junctions in trophoblastic cell fusion in the guinea-pig placenta. Cell Tissue Res. 205: 311–318, 1980.PubMedCrossRefGoogle Scholar
  127. Firth, J.A., Bauman, K., and Sibley, C.P.: Permeability pathways in fetal placental capillaries. Trophoblast Res. 3: 163–177, 1988.Google Scholar
  128. Fisher, S.J., and Laine, R.A.: High alpha-amylase activity in the syncytiotrophoblastic cells of first-trimester human placentas. J. Cell Biochem. 22: 47–54, 1983.PubMedCrossRefGoogle Scholar
  129. Fisher, S.J., Leitch, M.S., and Laine, A.: External labelling of glycoproteins from first-trimester human placental microvilli. Biochem. J. 221: 821–828, 1984.PubMedGoogle Scholar
  130. Flynn, A., Finke, J.H., and Hilfiker, M.L.: Placental mononuclear phagocytes as a source of interleukin-1 Science 218: 475–477, 1982.Google Scholar
  131. Flynn, A., Finke, J.H., and Loftus, M.A.: Comparison of interleukin-1 production by adherent cells and tissue pieces from human placenta. Immunopharmacology 9: 19–26, 1985.PubMedCrossRefGoogle Scholar
  132. Folkman, J., and Haudenschild, C.: Angiogenesis in vitro. Nature 288: 551–556, 1980.PubMedCrossRefGoogle Scholar
  133. Fox, H.: The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Commonw. 71: 885–893, 1964.PubMedCrossRefGoogle Scholar
  134. Fox, H.: The significance of villous syncytial knots in the human placenta. J. Obstet. Gynaecol. Br. Commonw. 72: 347–355, 1965.PubMedCrossRefGoogle Scholar
  135. Fox, H.: Perivillous fibrin deposition in the human placenta. Am. J. Obstet. Gynecol. 98: 245–251, 1967a.PubMedGoogle Scholar
  136. Fox, H.: The incidence and significance of Hofbauer cells in the mature human placenta. J. Pathol. Bacteriol. 93: 710717, 1967b.Google Scholar
  137. Fox, H.: Fibrinoid necrosis of placental villi. J. Obstet. Gynaecol. Br. Commonw. 75: 448–452, 1968.PubMedCrossRefGoogle Scholar
  138. Fox, H.: Effect of hypoxia on trophoblast in organ culture. Am. J. Obstet. Gynecol. 107: 1058–1064, 1970.PubMedGoogle Scholar
  139. Fox, H.: Morphological pathology of the placenta. In, The Placenta and Its Maternal Supply Line: Effects of Insufficiency on the Fetus. P. Gruenwald, ed. Medical Technical Publications, Lancaster, 1975.Google Scholar
  140. Fox, H.: Pathology of the Placenta. Saunders, Philadelphia, 1978.Google Scholar
  141. Fox, H., and Blanco, A.A.: Scanning electron microscopy of the human placenta in normal and abnormal pregnancies. Eur. J. Obstet. Gynecol. 4: 45–50, 1974.CrossRefGoogle Scholar
  142. Frank, H.G., Malekzadeh, F., Kertschanska, S., Crescimanno, C., Castellucci, M., Lang, I., Desoye, G., and Kaufmann, P.: Immunohistochemistry of two different types of placental fibrinoid. Acta Anat. (Basel) 150: 55–68, 1994.Google Scholar
  143. Frauli, M., and Ludwig, H.: Demonstration of the ability of Hofbauer cells to phagocytose exogenous antibodies. Eur. J. Obstet. Gynecol. Reprod. Biol. 26: 135–144, 1987a.PubMedCrossRefGoogle Scholar
  144. Frauli, M., and Ludwig, H.: Identification of human chorionic gonadotropin (HCG) secreting cells and other cell types using antibody to HCG and a new monoclonal antibody (mABlu-5) in cultures of human placental villi. Arch. Gynecol. Obstet. 241: 97–110, 1987b.PubMedCrossRefGoogle Scholar
  145. Frauli, M., and Ludwig, H • Immunocytochemical identification of mitotic Hofbauer cells in cultures of first trimester human placental villi. Arch. Gynecol. Obstet. 241: 47–51, 1987c.Google Scholar
  146. Freese, U.E.: The fetal-maternal circulation of the placenta. I. Histomorphologic, plastoid injection, and x-ray cinematographic studies on human placentas. Am. J. Obstet. Gynecol. 94: 354–360, 1966.Google Scholar
  147. Frolik, C.A., Dart, L.L., Meyers, C.A., Smith, D.M., and Sporn, M.B.: Purification and initial characterization of a type ß transforming growth factor from human placenta. Proc. Natl. Acad. Sci. U.S.A. 80: 3676–3680, 1983.PubMedCrossRefGoogle Scholar
  148. Fujimoto, S., Hamasaki, K., Ueda, H., and Kagawa, H.: Immunoelectron microscope observations on secretion of human placental lactogen (hPL) in the human chorionic villi. Anat. Rec. 216: 68–72, 1986.PubMedCrossRefGoogle Scholar
  149. Gabius, H.-J., Debbage, P.L., Engelhardt, R., Osmers, R., and Lange, W.: Identification of endogenous sugar-binding proteins (lectins) in human placenta by histochemical localization and biochemical characterization. Eur. J. Cell Biol. 44: 265–272, 1987.PubMedGoogle Scholar
  150. Galbraith, G.M.P., Galbraith, R.M., Temple, A., and Faulk, W.P.: Demonstration of transferrin receptors on human placental trophoblast. Blood 55: 240–242, 1980.PubMedGoogle Scholar
  151. Galton, M.: DNA content of placental nuclei. J. Cell Biol. 13: 183–191, 1962.PubMedCrossRefGoogle Scholar
  152. Garfield, R.E., Yallampalli, C., Buhimschi, I. and Chwalisz, K.: Reversal of preeclampsia symptoms induced in rats by nitric oxide inhibition with L-arginine, steroid hormones and an endothelin antagonist. Presented at the Society for Gynecologic Investigation Meeting, 1994.Google Scholar
  153. Gaspard, U.J., Hustin, J., Reuter, A.M., Lambotte, R., and Franchimont, P.: Immunofluorescent localization of placental lactogen, chorionic gonadotrophin and its alpha and beta subunits in organ cultures of human placenta. Placenta 1: 135–144, 1980.PubMedCrossRefGoogle Scholar
  154. Geier, G., Schuhmann, R., and Kraus, H.: Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten: autoradiographische Untersuchungen. Arch. Gynecol. 218: 31–37, 1975.Google Scholar
  155. Geller, H.F.: Über die sogenannten Hofbauerzellen in der reifen menschlichen Placenta. Arch. Gynecol. 188: 481–496, 1957.Google Scholar
  156. Geller, H.F.: Elektronenmikroskopische Befunde am Synzytium der menschlichen Plazenta. Geburtshilfe Frauenheilkd. 22: 1234–1237, 1962.PubMedGoogle Scholar
  157. Genbacev, O., Robyn, C., and Pantic, V.: Localization of chorionic gonadotropin in human term placenta on ultrathin sections with peroxidase-labeled antibody. J. Microsc. 15: 399–402, 1972.Google Scholar
  158. Gerl, D., Eichhorn, H., Eichhorn, K.-H., and Franke, H.: Quantitative Messungen synzytialer Zellkernkonzentrationen der menschlichen Plazenta bei normalen und pathologischen Schwangerschaften. Zentralbl. Gynäkol. 95: 263–266, 1973.PubMedGoogle Scholar
  159. Gey, G.O., Seegar, G.E., and Hellman, L.M.: The production of a gonadotrophic substance (prolan) by placental cells in tissue culture. Science 88: 306–307, 1938.PubMedCrossRefGoogle Scholar
  160. Gille, J., Börner, P., Reinecke, J., Krause, P.-H., and Deicher, H.: Über die Fibrinoidablagerungen in den Endzotten der menschlichen Placenta. Arch. Gynecol. 217: 263–271, 1974.Google Scholar
  161. Gillim, S.W., Christensen, A.K., and McLennan, Ch.E.: Fine structure of the human menstrual corpus luteum at its stage of maximum secretory activity. Am. J. Anat. 126: 409–428, 1969.PubMedCrossRefGoogle Scholar
  162. Glover, D.M., Brownstein, D., Burchette, S., Larsen, A., and Wilson, C.B.: Expression of HLA class II antigens and secretion of interleukin-1 by monocytes and macrophages from adults and neonates. Immunology 61: 195–201, 1987.PubMedGoogle Scholar
  163. Goldstein, J., Braverman, M., Salafia, C., and Buckley, P.: The phenotype of human placental macrophages and its variation with gestational age. Am. J. Pathol. 133: 648–659, 1988.PubMedGoogle Scholar
  164. Gosseye, S., and Fox, H.: An immunohistological comparison of the secretory capacity of villous and extravillous trophoblast in the human placenta. Placenta 5: 329–348, 1984.PubMedCrossRefGoogle Scholar
  165. Gossrau, R., Graf, R., Ruhnke, M., and Hanski, C.: Pro-teases in the human full-term placenta. Histochemistry 86: 405–413, 1987.PubMedCrossRefGoogle Scholar
  166. Goustin, A.S., Betsholtz, C., Pfeifer-Ohlsson, S., Persson, H., Rydnert, J., Bywater, M., Holmgren, G., Heldin, C.-H., Westermark, B., and Ohlsson, R.: Coexpression of the sis and myc proto-oncogenes in developing human placenta suggests autocrine control of trophoblast growth. Cell 41: 301–312, 1985.PubMedCrossRefGoogle Scholar
  167. Goyert, S.M., Ferrero, E.M., Seremetis, S.V., Winchester, R.J., Silver, J., and Mattison, A.C.: Biochemistry and expression of myelomonocytic antigens. J. Immunol. 137: 3909–3914, 1986.PubMedGoogle Scholar
  168. Goyert, S.M., Ferrero, E.M., Rettig, W.J., Yenamandra, A.K., Obata, F., and Le Beau, M.M.: The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239: 497–500, 1988.PubMedCrossRefGoogle Scholar
  169. Graf Spee, F.: Anatomie und Physiologie der Schwangerschaft. In, Handbuch der Geburtshilfe. Vol. 1. A. Doederlein, ed., pp. 3–152. Bergmann, Wiesbaden, 1915.Google Scholar
  170. Green, T., and Ford, H.C.: Human placental microvilli contain high-affinity binding sites for folate. Biochem. J. 218: 75–80, 1984.PubMedGoogle Scholar
  171. Grillo, M.A.: Cytoplasmic inclusions resembling nucleoli in sympathetic neurones of adult rats. J. Cell Biol. 45: 100117, 1970.Google Scholar
  172. Gröschel-Stewart, U.: Plazenta als endokrines Organ. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., pp. 217–233. Thieme Verlag, Stuttgart, 1981.Google Scholar
  173. Hamanaka, N., Tanizawa, O., Hashimoto, T., Yoshinari, S., and Okudaira, Y.: Electron microscopic study on the localization of human chorionic gonadotropin (HCG) in the chorionic tissue by enzyme labeled antibody technique. J. Electron Microsc. 20: 46–48, 1971.Google Scholar
  174. Hamilton, W.J., and Boyd, J.D.: Specializations of the syncytium of the human chorion. B.M.J. 1: 1501–1506, 1966.CrossRefGoogle Scholar
  175. Hardingham, T.E., and Fosang, A.J.: Proteoglycans: many forms and many functions. FASEB J. 6: 861–870, 1992.PubMedGoogle Scholar
  176. Hashimoto, M., Kosaka, M., Mori, Y., Komori, A., and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. I. J. Jpn. Obstet. Gynecol. Soc. 7: 44, 1960a.Google Scholar
  177. Hashimoto, M., Shimoyama, T., Hirasawa, T., Komori, A., Kawasaki, T., and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. II. J. Jpn. Obstet. Gynecol. Soc. 7: 122, 1960b.Google Scholar
  178. Hay, D.L.: Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br. J. Obstet. Gynaecol. 95: 1268–1275, 1988.PubMedCrossRefGoogle Scholar
  179. Haziot, A., Chen, S., Ferrero, E., Low, M.G., Silber, R., and Goyert, S.M.: The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol. 141: 547–552, 1988.PubMedGoogle Scholar
  180. Hedley, R., and Bradbury, M.B.W.: Transport of polar non-electrolytes across the intact and perfused guinea-pig placenta. Placenta 1: 277–285, 1980.PubMedCrossRefGoogle Scholar
  181. Heinrich, D., Metz, J., Raviola, E., and Forssmann, W.G.: Ultrastructure of perfusion fixed fetal capillaries in the human placenta. Cell Tissue Res. 172: 157–169, 1976.PubMedCrossRefGoogle Scholar
  182. Heinrich, D., Weihe, E., Gruner, C., and Metz, J.: Vergleichende Morphologie der Placentakapillaren. Anat. Anz. 71: 489–491, 1977.Google Scholar
  183. Heinrich, D., Aoki, A., and Metz, J.: Fetal capillary organization in different types of placenta. Trophoblast Res. 3: 149 162, 1988.Google Scholar
  184. Hempel, E., and Geyer, G.: Submikroskopische Verteilung der alkalischen Phosphatase in der menschlichen Placenta. Acta Histochem. 34: 138–147, 1969.PubMedGoogle Scholar
  185. Hemsen, A., Gillis, C., Larson, O., Haegerstrand, A., and Lundberg, J.M.: Characterization, localization and actions of endothelin in umbilical vessels and placenta of man. Acta Physiol. Scand. 43: 395–404, 1991.CrossRefGoogle Scholar
  186. Herbst, R., and Multier, A.M.: Les microvillosites a la surface des villosites chorioniques du placenta humain. Gynecol. Obstet. 69: 609–616, 1970.Google Scholar
  187. Herbst, R., Multier, A.M., and Hörmann, G.: Die menschlichen Plazentazotten des 2. Schwangerschaftstrimenon im elektronenoptischen Bild. Z. Geburtshilfe Gynäkol. 169: 1–16, 1968.PubMedGoogle Scholar
  188. Herbst, R., Multier, A.M., and Hörmann, G.: Elektronenoptische Untersuchungen an menschlichen Placentazotten. Zentralbl. Gynäkol. 91: 465–475, 1969.PubMedGoogle Scholar
  189. Hertig, A.T.: Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib. Embryol. Carnegie Inst. 25: 37–81, 1935.Google Scholar
  190. Hey, A., and Röckelein, G.: Die sog. Endothelvakuolen der Plazentagefäße—Physiologie oder Krankheit? Pathologe 10: 66–67, 1989.PubMedGoogle Scholar
  191. Hofbauer, J.: Über das konstante Vorkommen bisher unbekannter zelliger Formelemente in der Chorionzotte der menschlichen Plazenta und über Embryotrophe. Wien. Klin. Wochenschr. 16: 871–873, 1903.Google Scholar
  192. Hofbauer, J.: Grundzüge einer Biologie der menschlichen Plazenta mit besonderer Berücksichtigung der Fragen der fötalen Ernährung. Braumüller, Vienna, 1905.Google Scholar
  193. Hofbauer, J.: The function of the Hofbauer cells of the chorionic villus particularly in relation to acute infection and syphilis. Am. J. Obstet. Gynecol. 10: 1–14, 1925.Google Scholar
  194. Hoffman, L.H., and Di Pietro, D.L.: Subcellular localization of human placental acid phosphatases. Am. J. Obstet. Gynecol. 114: 1087–1096, 1972.PubMedGoogle Scholar
  195. Holmgren, L., Glaser, A., Pfeifer-Ohlsson, S., and Ohlsson, R.: Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113: 749–754, 1991.PubMedGoogle Scholar
  196. Horky, Z.: Beitrag zur Funktionsbedeutung der Hofbauer-Zellen (Beobachtungen in der Placenta bei Diabetes mellitus). Zentralbl. Gynäkol. 86: 1621–1626, 1964.PubMedGoogle Scholar
  197. Hörmann, G.: Haben die sogenannten Hofbauerzellen der Chorionzotten funktionelle Bedeutung? Zentralbl. Gynäkol. 69: 1199–1205, 1947.Google Scholar
  198. Hörmann, G.: Die Reifung der menschlichen Chorionzotte im Lichte ökonomischer Zweckmäßigkeit. Zentralbl. Gynäkol. 70: 625–631, 1948.Google Scholar
  199. Hörmann, G.: Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta. Arch. Gynecol. 184: 109–123, 1953.Google Scholar
  200. Hörmann, G.: Die Fibrinoidisierung des Chorionepithels als Konstruktionsprinzip der menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 164: 263–269, 1965.PubMedGoogle Scholar
  201. Hörmann, G., Herbst, R., and Ullmann, G.: Die Transformation des Zytotrophoblasten in den Synzytiotrophoblasten. Z. Geburtshlife. Gynäkol. 171: 171–182, 1969.Google Scholar
  202. Hoshina, M., Boothby, M., and Boime, I.: Cytological localization of chorionic gonadotropin and placental lactogen mRNAs during development of the human placenta. J. Cell Biol. 93: 190–198, 1982.PubMedCrossRefGoogle Scholar
  203. Hoshina, M., Hussa, R., Patillo, R., and Boime, I.: Cytological distribution of chorionic gonadotropin subunit and placental lactogen messenger RNA in neoplasms derived from human placenta. J. Cell Biol. 97: 1200–1206, 1983.PubMedCrossRefGoogle Scholar
  204. Hoshina, M., Boime, I., and Mochizuki, M.: Cytological localization of hPL and hCG mRNA in chorionic tissue using in situ hybridization. Acta Obstet. Gynecol. Jpn. 36: 397–404, 1984.Google Scholar
  205. Howatson, A.G., Farquharson, M., Meager, A., McNicol, A.M., and Foulis, A.K.: Localization of alpha-interferon in the human feto-placental unit. J. Endocrinol. 119: 531–534, 1988.PubMedCrossRefGoogle Scholar
  206. Huber, C.P., Carter, J.E., and Vellios, F.: Lesions of the circulatory system of the placenta: a study of 243 placentas with special reference to the developments of infarcts. Am. J. Obstet. Gynecol. 81: 560–572, 1961.PubMedGoogle Scholar
  207. Huguenin, B.: Über die Genese der Fibringerinnungen und Infarktbildungen der menschlichen Placenta. Beitr. Geburtshilfe, Gynäkol. 13: 339–357, 1909.Google Scholar
  208. Hulstaert, C.E., Torringa, J.L., Koudstaal, J., Hardonk, M.J., and Molenaar, I.: The characteristic distribution of alkaline phosphatase in the full-term human placenta. Gynecol. Invest. 4: 24–30, 1973.CrossRefGoogle Scholar
  209. Hunt, J.S.: Cytokine networks in the uteroplacental unit: macrophages as pivotal regulatory cells. J. Reprod. Immunol. 16: 1–17, 1989.PubMedCrossRefGoogle Scholar
  210. Ikawa, A.: Observations on the epithelium of human chorionic villi with the electron microscope. J. Jpn. Obstet. Gynecol. Soc. 6: 219, 1959.Google Scholar
  211. Iklé, F.A.: Trophoblastzellen im strömenden Blut. Schweiz. Med. Wochenschr. 91: 934–945, 1964.Google Scholar
  212. Ishikawa, F., Miyazono, K., Hellman, U., Drexler, H., Wernstedt, C., Hagiwara, K., Usuki, K., Takaku, F., Risau, W., and Heldin, C.-H.: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338: 557–562, 1989.PubMedCrossRefGoogle Scholar
  213. Jackson, M.R., Joy, C.F., Mayhem, T.M., and Haas, J.D.: Stereological studies on the true thickness of the villous membrane in human term placentae: a study of placentae from high-altitude pregnancies. Placenta 6:249–258, 1985:Google Scholar
  214. Jeffcoate, T.N.A., and Scott, J.S.: Some observations on the placental factor in pregnancy toxemia. Am. J. Obstet. Gynecol. 77: 475–489, 1959.PubMedGoogle Scholar
  215. Jemmerson, R., Klier, F.G., and Fishman, W.H.: Clustered distribution of human placental alkaline phosphatase on the surface of both placental and cancer cells. J. Histochem. Cytochem. 33: 1227–1234, 1985.PubMedCrossRefGoogle Scholar
  216. Jimenez, E., Vogel, M., Arabin, B., Wagner, G., and Mirsalim, P.: Correlation of ultrasonographic measurement of the utero-placental and fetal blood flow with the morphological diagnosis of placental function. Trophoblast Res. 3: 325–334, 1988.Google Scholar
  217. Johnson, P.M., and Brown, P.J.: The IgG and transferrin receptors of the human syncytiotrophoblast microvillous plasma membrane. Am. J. Reprod. Immunol. 1: 4–9, 1980.PubMedGoogle Scholar
  218. Johnson, P.M., and Brown, P.J.: Fc gamma receptors in the human placenta. Placenta 2: 355–369, 1981.PubMedCrossRefGoogle Scholar
  219. Jones, C.J.P., and Fox, H.: Syncytial knots and intervillous bridges in the human placenta: an ultrastructural study. J. Anat. 124: 275–286, 1977.PubMedGoogle Scholar
  220. Jones, C.J.P., Hartmann, M., Blaschitz, A., and Desoye, G.: Ultrastructural localization of insulin receptors in human placenta. Am. J. Reprod. Immunol. 30: 136–145, 1993.PubMedGoogle Scholar
  221. Kameda, T., Koyama, M., Matsuzajci, N., Taniguchi, T., Fumitaka, S., and Tanizawa, O.: Localization of three subtypes of Fc gamma receptors in human placenta by immunohistochemical analysis. Placenta 12: 15–26, 1991.PubMedCrossRefGoogle Scholar
  222. Kameya, T., Watanabe, K., Kobayashi, T., and Mukojima, T.: Enzyme-and immuno-histochemical localization of human placental alkaline phosphatase. Acta Histochem. Cytochem. 6: 124–136, 1973.Google Scholar
  223. Kao, L.-C., Caltabiano, S., Wu, S., Strauss, J.F., III, and Kliman, H.J.: The human villous cytotrophoblast: interactions with extracellular matrix proteins, endocrine function, and cytoplasmic differentiation in the absence of syncytium formation. Dev. Biol. 130: 693–702, 1988.PubMedCrossRefGoogle Scholar
  224. Kastschenko, N.: Das menschliche Chorionepithel und dessen Rolle bei der Histogenese der Placenta. Arch. Anat. Physiol. (Leipzig), 451–480, 1885.Google Scholar
  225. Katabuchi, H., Naito, M., Miyamura, S., Takahashi, K., and Okamura, H.: Macrophages in human chorionic villi. Prog. Clin. Biol. Res. 296: 453–458, 1989.PubMedGoogle Scholar
  226. Kaufmann, P.: Über polypenartige Vorwölbungen an Zell-und Syncytiumoberflächen in reifen menschlichen Plazenten. Z. Zellforsch. 102: 266–272, 1969.PubMedCrossRefGoogle Scholar
  227. Kaufmann, P.: Untersuchungen über die Langhanszellen in der menschlichen Placenta. Z. Zellforsch. 128: 283–302, 1972.PubMedCrossRefGoogle Scholar
  228. Kaufmann, P.: Experiments on infarct genesis caused by blockage of carbohydrate metabolism in guinea pig placenta. Virchows Arch. Pathol. Anat. Histol. 368: 11–21, 1975a.CrossRefGoogle Scholar
  229. Kaufmann, P.: Über die Bedeutung von Plasmaprotrusionen an reifenden und alternden Zellen. Anat. Anz. 69: 307–312, 1975b.Google Scholar
  230. Kaufmann, P.: Fibrinoid. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds. Thieme, Stuttgart, 1981.Google Scholar
  231. Kaufmann, P.: Vergleichend-anatomische und funktionelle Aspekte des Placenta-Baues. Funkt. Biol. Med. 2: 71–79, 1983.Google Scholar
  232. Kaufmann, P.: Influence of ischemia and artificial perfusion on placental ultrastructure and morphometry. Contrib. Gynecol. Obstet. 13: 18–26, 1985.PubMedGoogle Scholar
  233. Kaufmann, P., and Miller, R.K., eds.: Placental vascularization and blood flow: basic research and clinical applications. Trophoblast Res. 3:1–370, 1988.Google Scholar
  234. Kaufmann, P., and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. I. Reifungs-und Alterungsvorgänge am Trophoblasten. Histochemistry 29: 65–82, 1972.PubMedCrossRefGoogle Scholar
  235. Kaufmann, P., and Stark, J.: Semidünnschnitt-cytochemische und immunautoradiographische Befunde zum Hormonstoffwechsel der reifen menschlichen Placenta. Anat. Anz. 67: 245–249, 1973.Google Scholar
  236. Kaufmann, P., and Stegner, H.E.: Über die funktionelle Differenzierung des Zottensyncytiums in der menschlichen Placenta. Z. Zellforsch. 135: 361–382, 1972.PubMedCrossRefGoogle Scholar
  237. Kaufmann, P., Schiebler, Th.H., Ciobotaru, C., and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. II. Zur Gliederung des Syncytiotrophoblasten. Histochemistry 40: 191–207, 1974a.PubMedCrossRefGoogle Scholar
  238. Kaufmann, P., Thorn, W., and Jenke, B.: Die Morphologie der Meerschweinchenplacenta nach Monojodacetat-und Fluorid-Vergiftung. Arch. Gynecol. 216: 185–203, 1974b.Google Scholar
  239. Kaufmann, P., Gentzen, D.M., and Davidoff, M.: Die Ultrastruktur von Langhanszellen in pathologischen menschlichen Placenten. Arch. Gynecol. 22: 319–332, 1977a.Google Scholar
  240. Kaufmann, P., Stark, J., and Stegner, H.E.: The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177: 105–121, 1977b.PubMedCrossRefGoogle Scholar
  241. Kaufmann, P., Schröder, H., and Leichtweiss, H.-P.: Fluid shift across the placenta. II. Fetomaternal transfer of horseradish peroxidase in the guinea pig. Placenta 3: 339348, 1982.Google Scholar
  242. Kaufmann, P., Nagl, W., and Fuhrmann, B.: Die funktionelle Bedeutung der Langhanszellen der menschlichen Placenta. Anat. Anz. 77: 435–436, 1983.Google Scholar
  243. Kaufmann, P., Luckhardt, M., Schweikhart, G., and Cantle, S.J.: Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8: 235–247, 1987a.PubMedCrossRefGoogle Scholar
  244. Kaufmann, P., Schröder, H., Leichtweiss, H.-P., and Winterhager, E.: Are there membrane-lined channels through the trophoblast? A study with lanthanum hydroxide. Trophoblast Res. 2: 557–571, 1987b.Google Scholar
  245. Kaufmann, P., Firth, J.A., Sibley, C.P., and Schröder, H.: Feto-maternal protein permeability of the placenta-tracer studies using various haeme proteins and lanthanum hydroxide. Gegenbaurs Morphol. Jahrb. 135: 305, 1989.Google Scholar
  246. Kelley, L.K., King, B.F., Johnson, L.W., and Smith, C.H.: Protein composition and structure of human placental microvillous membrane. Exp. Cell Res. 123: 167–176, 1979.PubMedCrossRefGoogle Scholar
  247. Kemnitz, P.: Die Morphogenese des Zottentrophoblasten der menschlichen Plazenta—Ein Beitrag zum Synzytiumproblem. Zentralbl. Allg. Pathol. 113: 71–76, 1970.PubMedGoogle Scholar
  248. Kertschanska, S., and Kaufmann, P.: Morphological evidence for the existence of transtrophoblastic channels in human placental villi. Placenta 13: A33, 1992.CrossRefGoogle Scholar
  249. Kertschanska, S., Kosanke, G., and Kaufmann, P.: Is there morphological evidence for the existence of transtrophoblastic channels in human placental villi? Trophoblast Res. 8 (1994, in press).Google Scholar
  250. Khansari, N., and Fudenberg, H.H.: Functional heterogeneity of human cord blood monocytes. Scand. J. Immunol. 19: 337–342, 1984.PubMedCrossRefGoogle Scholar
  251. Khodr, G.S., and Siler-Khodr, T.M.: Localization of luteinizing hormone releasing factor (LRF) in the human placenta. Fertil. Steril. 29: 523–526, 1978.PubMedGoogle Scholar
  252. Khong, T.Y., Lane, E.B., and Robertson, W.B.: An immunocytochemical study of fetal cells at the maternal-placental interface using monoclonal antibodies to keratins, vimentin and desmin. Cell Tissue Res. 246: 189–195, 1986.PubMedCrossRefGoogle Scholar
  253. Kim, Ch.K., and Benirschke, K.: Autoradiographic study of the “X cells” in the human placenta. Am. J. Obstet. Gynecol. 109: 96–102, 1971.PubMedGoogle Scholar
  254. Kim, Ch.K., Naftolin, F., and Benirschke, K.: Immunohistochemical studies of the “X cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Am. J. Obstet. Gynecol. 111: 672–676, 1971.PubMedGoogle Scholar
  255. King, B.F.: Localization of transferrin on the surface of the human placenta by electron microscopic immunocytochemistry. Anat. Rec. 186: 151–159, 1976.PubMedCrossRefGoogle Scholar
  256. King, B.F.: The distribution and mobility of anionic sites on the surface of human placental syncytial trophoblast. Anat. Rec. 199: 15–22, 1981.PubMedCrossRefGoogle Scholar
  257. King, B.F.: The organization of actin filaments in human placental villi. J. Ultrastruct. Res. 85: 320–328, 1983.PubMedCrossRefGoogle Scholar
  258. King, B.F.: Ultrastructural differentiation of stromal and vascular components in early macaque placental villi. Am. J. Anat. 178: 30–44, 1987.PubMedCrossRefGoogle Scholar
  259. King, B.F., and Menton, D.N.: Scanning electron microscopy of human placental villi from early and late in gestation. Am. J. Obstet. Gynecol. 122: 824–828, 1975.PubMedGoogle Scholar
  260. Kjaeldgaard, A., Pschera, H., Larsson, B., Gaffney, P., and Astedt, B.: Plasminogen activators and inhibitors in amniotic fluid. Fibrinolysis 3: 203–206, 1989.CrossRefGoogle Scholar
  261. Kliman, H.J., and Feinberg, R.F.: Human trophoblastextracellular matrix (ECM) interactions in vitro: ECM thickness modulates morphology and proteolytic activity. Proc. Natl. Acad. Sci. U.S.A. 87: 3057–3061, 1990.PubMedCrossRefGoogle Scholar
  262. Kliman, H.J., Nestler, J.E., Sermasi, E., Sanger, J.M., and Strauss, J.F., III: Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placenta. Endocrinology 118: 1567–1582, 1986.PubMedCrossRefGoogle Scholar
  263. Kliman, H.J., Feinman, M.A., and Strauss, J.F., III: Differentiation of human cytotrophoblasts into syncytiotrophoblasts in culture. Trophoblast Res. 2: 407–421, 1987.Google Scholar
  264. Kline, B.S.: Microscopic observations of development of human placenta. Am. J. Obstet. Gynecol. 61: 1065–1074, 1951.PubMedGoogle Scholar
  265. Knobil, E., and Neill, J.D., eds.: The Physiology of Reproduction. Vol. 2. Raven Press, New York, 1993.Google Scholar
  266. Knoth, M.: Ultrastructure of chorionic villi from a foursomite human embryo. J. Ultrastruct. Res. 25: 423–440, 1968.PubMedCrossRefGoogle Scholar
  267. Kohnen, G.: Immunhistochemische Charakterisierung extravaskulärer kontraktiler Zellen in menschlichen Placentazotten. Medical thesis, Technical University of Aachen, 1994.Google Scholar
  268. Kohnen, G., Mironov, V., Demir, R., Castellucci, M., and Kaufmann, P.: Immunhistochemische Klassifizierung von Stammzotten in der menschlichen Plazenta. Anat. Anz. 174 (Suppl.): 127, 1992.Google Scholar
  269. Kohnen, G., Castellucci, M., Graf, R., and Kaufmann, P.: Contractile filaments of extravascular stromal cells in human placental villi. Placenta 14: A38, 1993a.Google Scholar
  270. Kohnen, G., Kosanke, G., Korr, H., and Kaufmann, P.: Comparison of various proliferation markers applied to human placental tissue. Placenta 14: A38, 1993b.Google Scholar
  271. Korhonen, M., Ylanne, J., Laitinen, L., Cooper, H.M., Quaranta, V., and Virtanen, I.: Distribution of the alpha 1—alpha 6 integrin subunits in human developing and term placenta. Lab. Invest. 65: 347–356, 1991.PubMedGoogle Scholar
  272. Krantz, K.E., and Parker, J.C.: Contractile properties of the smooth muscle in the human placenta. Clin. Obstet. Gynecol. 93: 253–258, 1963.Google Scholar
  273. Kristoffersen, E.K., Ulvestad, E., Vedeler, C.A., and Matre, R.: Fc-gamma receptor heterogeneity in the human placenta. Scand. J. Immunol. 31: 561–564, 1990.CrossRefGoogle Scholar
  274. Kubli, F., and Budliger, H.: Beitrag zur Morphologie der insuffizienten Plazenta. Geburtshilfe Frauenheilkd. 23: 3743, 1963.Google Scholar
  275. Kunicki, T.J., Nugent, D.J., Staats, S.J., Orchekowski, R.P., Wayner, E.A., and Carter, W.G.: The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet la-IIa complex. J. Biol. Chem. 263: 4516–4519, 1988.PubMedGoogle Scholar
  276. Kurman, R.J., Young, R.H., Norris, H.J., Main, C.S., Lawrence, W.D., and Scully, R.E.: Immunocytochemical localization of placental lactogen and chorionic gonadotropin in the normal placenta and trophoblastic tumors, with emphasis on intermediate trophoblast and the placental site trophoblastic tumor. Int. J. Gynecol. Pathol. 3: 10 1121, 1984.Google Scholar
  277. Küstermann, W.: Über “Proliferationsknoten” und “Syncytialknoten” der menschlichen Placenta. Anat. Anz. 150: 144–157, 1981.PubMedGoogle Scholar
  278. Laatikainen, T., Saijonmaa, O., Salminen, K., and Wahlström, T.: Localization and concentrations of beta-endorphin and beta-lipotrophin in human placenta. Placenta 8: 381–387, 1987.PubMedCrossRefGoogle Scholar
  279. Ladines-Llave, C.A., Maruo, T., Manalo, A.S., and Mochizuki, M.: Cytologic localization of epidermal growth factor and its receptor in developing human placenta varies over the course of pregnancy. Am. J. Obstet. Gynecol. 165: 1377–1382, 1991.PubMedGoogle Scholar
  280. Lafond, J., Auger, D., Fortier, J., and Brunette, M.G.: Parathyroid hormone receptor in human placental syncytiotrophoblast brush border and basal plasma membranes. Endocrinology 123: 2834–2840, 1988.PubMedCrossRefGoogle Scholar
  281. Lala, P.K., and Graham, C.H.: Mechanisms of trophoblast invasiveness and their control: the role of proteases and protease inhibitors. Cancer Metastasis Rev. 9: 369–379, 1990.PubMedCrossRefGoogle Scholar
  282. Lamarre, D., Ashkenazi, A., Fleury, S., Smith, D.H., Sekaly, R.-P., and Capon, D.J.: The MHC-binding and gp 120-binding functions of CD4 are separable. Science 245: 743–746, 1989.PubMedCrossRefGoogle Scholar
  283. Lang, I., Dohr, G., and Desoye, G.: Isolation and culture of fetal vascular endothelial cells derived from human full term placenta. Placenta 14: A40, 1993a.Google Scholar
  284. Lang, I., Hartmann, M., Blaschitz, A., Dohr, G., Skofitsch, G., and Desoye, G • Immunohitochemical evidence for the heterogeneity of maternal and fetal vascular endothelial cells in human full-term placenta. Cell Tissue Res. 274: 21 1218, 1993b.Google Scholar
  285. Langhans, T.: Zur Kenntnis der menschlichen Placenta. Arch. Gynäkol. 1: 317–334, 1870.CrossRefGoogle Scholar
  286. Langhans, T.: Untersuchungen über die menschliche Placenta. Arch. Anat. Physiol. Anat. Abt. 188–267, 1877.Google Scholar
  287. Latta, J.S., and Beber, C.R.: Cells with metachromatic granules in the stroma of human chorionic villi. Science 117: 498–499, 1953.PubMedCrossRefGoogle Scholar
  288. Leach, L., Eaton, B.M., Firth, J.A., and Contractor, S.F.: Immunogold localisation of endogenous immunoglobulin-G in ultrathin frozen sections of the human placenta. Cell Tissue Res. 257: 603–607, 1989.PubMedCrossRefGoogle Scholar
  289. Leach, L., Bhasin, Y., Clark, P., and Firth, J.A.: Isolation and characterisation of human microsvascular endothelial cells from chorionic villi of term placenta. Placenta 14: A41, 1993.CrossRefGoogle Scholar
  290. Leibl, W., Kerjaschki, D., and Hörandner, H.: Mikrovilllusfreie Areale an Chorionzotten menschlicher Placenten. Gegenbaurs Morphol. Jahrb. 121: 26–28, 1975.Google Scholar
  291. Lemtis, H.: Über die Architektonik des Zottengefäßapparates der menschlichen Plazenta. Anat. Anz. 102:106–133, 1955. Lemtis, H.: Physiologie der Placenta. Bibl. Gynaecol. (Basel) 54: 1–52, 1970.Google Scholar
  292. Lessin, D.L., Hunt, J.S., King, C.R., and Wood, G.W.: Antigen expression by cells near the maternal-fetal interface. Am. J. Reprod. Immunol. Microbiol. 16: 1–7, 1988.PubMedGoogle Scholar
  293. Lewis, S.H., Reynolds-Kohler, C., Fox, H.E., and Nelson, J.A.: HIV-1 in trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet 335: 565–568, 1990.PubMedCrossRefGoogle Scholar
  294. Lewis, W.H.: Hofbauer cells (clasmatocytes) of the human chorionic villus. Bull. Johns Hopkins Hosp. 35: 183–185, 1924.Google Scholar
  295. Librach, C.L., Werb, Z., Fitzgerald, M.L., Chiu, K., Corwin, N.M., Esteves, R.A., Grobelny, D., Galardy, R., Damsky, C.H., and Fisher, S.J.: 92-kD Type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol. 113: 437449, 1991.Google Scholar
  296. Liebhaber, S.A., Urbanek, M., Ray, J., Ruan, R.S., and Cooke, N.E.: Characterization and histologic localization of human growth hormone-variant gene expression in the placenta. J. Clin. Invest. 83: 1985–1991, 1989.PubMedCrossRefGoogle Scholar
  297. Liebhart, M.: Some observations on so-called fibrinoid necrosis of placental villi: an electron-microscopic study. Pathol. Eur. 6: 217–220, 1971.PubMedGoogle Scholar
  298. Liebhart, M.: Polysaccharide surface coat (glycocalix) of human placental villi. Pathol. Eur. 9: 3–10, 1974.PubMedGoogle Scholar
  299. Lister, U.M.: Ultrastructure of the early human placenta. J. Obstet. Gynaecol. Br. Commonw. 71: 21–32, 1964.PubMedCrossRefGoogle Scholar
  300. Lister, U.M.: The localization of placental enzymes with the electron microscope. J. Obstet. Gynaecol. Br. Commonw. 74: 34–49, 1967.PubMedCrossRefGoogle Scholar
  301. Loke, Y.W., Eremin, O., Ashby, J., and Day, S.: Characterization of the phagocytic cells isolated from the human placenta. J. Reticuloendothel. Soc. 31: 317–324, 1982.PubMedGoogle Scholar
  302. Luckett, W.P.: The fine structure of the placental villi of the rhesus monkey (Macaca mulatta). Anat. Rec. 167: 141–164, 1970.CrossRefGoogle Scholar
  303. Luckett, W.P.: Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152: 59–97, 1978.PubMedCrossRefGoogle Scholar
  304. Lupu, R., Colomer, R., Kannan, B., and Lippman, M.E.: Characterization of a growth factor that binds exclusively to the erbB-2 receptor and induces cellular responses. Proc. Natl. Acad. Sci. U.S.A. 89: 2287–2291, 1992.PubMedCrossRefGoogle Scholar
  305. Macara, L.M., Kingdom, J.C.P., and Kaufmann, P.: Control of fetoplacental circulation. Fetal Maternal Med. Rev. 5: 167–179, 1993.Google Scholar
  306. Mahnke, P.F., and Jacob, C.: Histologische, histochemische und papierchromatographische Untersuchungen an Mastzellen (MZ) der menschlichen Plazenta. Z. Mikrosk. Anat. Forsch. 85: 105–122, 1972.PubMedGoogle Scholar
  307. Malassine, A., Goldstein, S., Alsat, E., Merger, Ch., and Cedard, L.: Ultrastructural localization of low density lipoprotein bindings site on the surface of the syncytial microvillous membranes of the human placenta. IRCS Med. Sci. 12: 166–167, 1984.Google Scholar
  308. Malassine, A., Besse, C., Roche, A., Alsat, E., Rebourcet, R., Mondon, F., and Cedard, L.: Ultrastructural visualization of the internalization of low density lipoprotein by human placental cells. Histochemistry 87: 457–464, 1987.PubMedCrossRefGoogle Scholar
  309. Malassine, A., Cronier, L., Mondon, F., Mignot, T.M., and Ferre, F.: Localization and production of immunoreactive endothelin-1 in the trophoblast of human placenta. Cell Tissue Res. 271: 491–497, 1993.PubMedCrossRefGoogle Scholar
  310. Marchand, F.: Über das maligne Chorionepitheliom. Berl. Klin. Wochenschr. 35: 249–250, 1898.Google Scholar
  311. Marez, A., Nguyen, T., Chevallier, B., Clement, G., Dauchel, M.C., and Barritault, D.: Platelet derived growth factor is present in human placenta: purification from an industrially processed fraction. Biochimie 69: 125–129, 1987.PubMedCrossRefGoogle Scholar
  312. Martin, B.J., and Spicer, S.S.: Multivesicular bodies and related structures of the syncytiotrophoblast of human term placenta. Anat. Rec. 175: 15–36, 1973a.PubMedCrossRefGoogle Scholar
  313. Martin, B.J., and Spicer, S.S.: Ultrastructural features of cellular maturation and aging in human trophoblast. J. Ultrastruct. Res. 43: 133–149, 1973b.PubMedCrossRefGoogle Scholar
  314. Martin, B.J., Spicer, S.S., and Smythe, N.M.: Cytochemical studies of the maternal surface of the syncytiotrophoblast of human early and term placenta. Anat. Rec. 178: 769–786, 1974.PubMedCrossRefGoogle Scholar
  315. Martinoli, C., Castellucci, M., Zaccheo, D., and Kaufmann, P.: Scanning electron microscopy of stromal cells of human placental villi throughout pregnancy. Cell Tissue Res. 235: 647–655, 1984.PubMedCrossRefGoogle Scholar
  316. Maruo, T., and Mochizuki, M.: Immunohistochemical localization of epidermal growth factor receptor and myc oncogene product in human placenta: implication for trophoblast proliferation and differentiation. Am. J. Obstet. Gynecol. 156: 721–727, 1987.PubMedGoogle Scholar
  317. Maruo, T., Matsuo, H., Oishi, T., Hayashi, M., Nishino, R., and Mochizuki, M.: Induction of differentiated trophoblast function by epidermal growth factor: relation of immunohistochemically detected cellular epidermal growth factor receptor levels. J. Clin. Endocrinol. Metab. 64: 744–750, 1987.PubMedCrossRefGoogle Scholar
  318. Matsubara, S., Tamada, T., Kurahashi, K., and Saito, T.: Ultracytochemical localizations of adenosine nucleotidase activities in the human term placenta, with special reference to 5’-nucleotidase activity. Acta Histochem. Cytochem. 20: 409–419, 1987a.Google Scholar
  319. Matsubara, S., Tamada, T., and Saito, T.: Cytochemical study of the electron microscopical localization of Ca ATPase activity in the human trophoblast. Acta Obstet. Gynecol. Jpn. 39: 1080–1086, 1987b.Google Scholar
  320. Matsubara, S., Tamada, T., and Saito, T.: Ultracytochemical localizations of adenylate cyclase, guanylate cyclase and cyclic 3’,5’-nucleotide phosphodiesterase activity on the trophoblast in the human placenta. Histochemistry 87: 505509, 1987c.Google Scholar
  321. Matsubara, S., Tamada, T., and Saito, T.: Ultracytochemical localizations of alkaline phosphatase and acid phosphatase activities in the human term placenta. Acta Histochem. Cytochem. 20: 283–294, 1987d.Google Scholar
  322. Mayer, M., Panigel, M., and Tozum, R.: Observations sur l’aspect radiologique de la vascularisation fetale du placenta humain isole mainten en survie par perfusion de liquides physiologiques. Gynecol. Obstet. (Paris) 58: 391–397, 1959.Google Scholar
  323. Mayhew, T.M.: The problem of ambiguous profiles of micro-villi between apposed cell surfaces: a stereological solution. J. Microsc. 139: 327–330, 1985.PubMedCrossRefGoogle Scholar
  324. Mayhew, T.M.: Scaling placental oxygen diffusion to birth-weight: studies on placentae from low-and high-altitude pregnancies. J. Anat. 175: 187–194, 1991.PubMedGoogle Scholar
  325. Mayhew, T.M., and Burton, G.J.: Methodological problems in placental morphometry: apologia for the use of stereology based on sound sampling practice. Placenta 9: 565–581, 1988.PubMedCrossRefGoogle Scholar
  326. Mayhew, T.M., Jackson, M.R., and Haas, J.D.: Oxygen diffusive conductances of human placentae from term pregnancies at low and high altitudes. Placenta 11: 493–503, 1990.PubMedCrossRefGoogle Scholar
  327. McCormick, J.N., Faulk, W.P., Fox, H., and Fudenberg, H.H.: Immunohistological and elution studies of the human placenta. J. Exp. Med. 91: 1–13, 1971.CrossRefGoogle Scholar
  328. McKay, D.G., Hertig, A.T., Adams, E.C., and Richardson, M.V.: Histochemical observations on the human placenta. Obstet. Gynecol. 12: 1–36, 1958.PubMedCrossRefGoogle Scholar
  329. Mebius, R.E., Martens, G., Breve’, J., Delemarra, F.G.A., and Kraal, G.: Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration ? Eur. J. Immunol. 21: 3041–3044, 1991.PubMedCrossRefGoogle Scholar
  330. Merrill, J.A.: Common pathological changes of the placenta. Clin. Obstet. Gynecol. 6: 96–109, 1963.PubMedCrossRefGoogle Scholar
  331. Merttens, I.: Beiträge zur normalen und pathologischen Anatomie der menschlichen Placenta. Z. Geburtshilfe Gynakol. 30: 1–22, 1894.Google Scholar
  332. Metz, J., Heinrich, D., and Forssmann, W.G.: Ultrastructure of the labyrinth in the rat full term placenta. Anat. Embryol. 149: 123–148, 1976.PubMedCrossRefGoogle Scholar
  333. Metz, J., Weihe, E., and Heinrich, D.: Intercellular junctions in the full term human placenta. I. Syncytiotrophoblastic layer. Anat. Embryol. 158: 41–50, 1979.PubMedCrossRefGoogle Scholar
  334. Meyer, A.W.: On the nature, occurrence and identity of the plasma cells of Hofbauer. J. Morphol. 32: 327–349, 1919.CrossRefGoogle Scholar
  335. Midgley, A.R., and Pierce, G B • Immunohistochemical localization of human chorionic gonadotropin. J. Exp. Med. 115: 289–297, 1962.CrossRefGoogle Scholar
  336. Miller, R.K., and Thiede, H.A., eds.: Fetal nutrition, metabolism, and immunology: the role of the placenta. Trophoblast Res. 1:1–387, 1984.Google Scholar
  337. Miller, D., Pelton, R., Deryick, R., and Moses, H.: Transforming growth factor-13: a family of growth regulatory peptides. Ann. N. Y. Acad. Sci. 593: 208–217, 1990.PubMedCrossRefGoogle Scholar
  338. Minot, C.S.: Uterus and embryo. I. Rabbit. II. Man. J. Morphol. 2: 341–460, 1889.CrossRefGoogle Scholar
  339. Mitchell, M.D., Trautman, M.S., and Dudley, D.J.: Cytokine networking in the placenta. Placenta 14: 249–275, 1993.PubMedCrossRefGoogle Scholar
  340. Moe, N.: Deposits of fibrin and plasma proteins in the normal human placenta. Acta Pathol. Microbiol. Scand. 76: 74–88, 1969a.CrossRefGoogle Scholar
  341. Moe, N.: Histological and histochemical study of the extracellular deposits in the normal human placenta. Acta Pathol. Microbiol. Scand. 76: 419–431, 1969b.CrossRefGoogle Scholar
  342. Moe, N.: The deposits of fibrin and fibrin-like materials in the basal plate of the normal human placenta. Acta Pathol. Microbiol. Scand. 75: 1–17, 1969c.Google Scholar
  343. Moe, N.: Mitotic activity in the syncytiotrophoblast of the human chorionic villi. Am. J. Obstet. Gynecol. 110: 431, 1971.PubMedGoogle Scholar
  344. Moe, N., and Joergensen, L.: Fibrin deposits on the syncytium of the normal human placenta: evidence of their thrombogenic origin. Acta Pathol. Microbiol. Scand. 72: 519–541, 1968.CrossRefGoogle Scholar
  345. Moll, U.M., and Lane, B.L.: Proteolytic activity of first trimester human placenta: localization of interstitial collagenase in villous and extravillous trophoblast. Histochemistry 94: 555–560, 1990.PubMedCrossRefGoogle Scholar
  346. Morrish, D.W., Bhardwaj, D., Dabbagh, L.K., Marusyk, H., and Siy, O.: Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J. Clin. Endocrinol. Metab. 65: 1282–1290, 1987.PubMedCrossRefGoogle Scholar
  347. Morrish, D.W., Marusyk, H., and Bhardwaj, D.: Ultra-structural localization of human placental lactogen in distinctive granules in human term placenta: comparison with granules containing human chorionic gonadotropin. J. Histochem. Cytochem. 36: 193–197, 1988.PubMedCrossRefGoogle Scholar
  348. Morrish, D.W., Bhardwaj, D., and Paras, M.T.: Transforming growth factor ßl inhibits placental differentiation and human chorionic gonadotropin and placental lactogen secretion. Endocrinology 129: 22–26, 1991.PubMedCrossRefGoogle Scholar
  349. Moskalewski, S., Ptak, W., and Czarnik, Z.: Demonstration of cells with IgG receptor in human placenta. Biol. Neonate 26: 268–273, 1975.PubMedCrossRefGoogle Scholar
  350. Mues, B., Langer, D., Zwadlo, G., and Sorg, C.: Phenotypic characterization of macrophages in human term placenta. Immunology 67: 303–307, 1989.PubMedGoogle Scholar
  351. Mühlhauser, J., Crescimanno, C., Kaufmann, P., Höfler, H., Zaccheo, D., and Castellucci, M.: Differentiation and proliferation patterns in human trophoblast revealed by cerbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41: 165–173, 1993.PubMedCrossRefGoogle Scholar
  352. Mühlhauser, J., Crescimanno, C., Rajaniemi, H., Parkkila, S., Milovanov, A.P., Castellucci, M., and Kaufmann, P.: Immunohistochemistry of carbonic anhydrase in human placenta and fetal membranes. Histochemistry 101: 91–98, 1994.PubMedCrossRefGoogle Scholar
  353. Müller, H.: Abhandlung über den Bau der Molen. BonitasBauer, Würzburg, 1847.Google Scholar
  354. Murphy, B.E.P.: Cortisol and cortisone in human fetal development. J. Steroid Biochem. 11: 509–513, 1979.PubMedCrossRefGoogle Scholar
  355. Myatt, L., Brewer, A., and Brockman, D.E.: The action of nitric oxide in the perfused human fetal-placental circulation. Am. J. Obstet. Gynecol. 164: 687–692, 1991.PubMedGoogle Scholar
  356. Myatt, L., Brockman, D.E., Eis, A.L.W., and Pollock, J.S.: Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 14: 487–495, 1993.PubMedCrossRefGoogle Scholar
  357. Myers, R.E., and Fujikura, T.: Placental changes after experimental abruptio placentae and fetal vessel ligation of rhesusGoogle Scholar
  358. monkey placenta. Am. J. Obstet. Gynecol. 100: 846–851, 1968.Google Scholar
  359. Nagy, T., Boros, B., and Benkoe, K.: Elektronenmikroskopische Untersuchungen junger und reifer menschlicher Plazenten. Arch. Gynecol. 200: 428–440, 1965.Google Scholar
  360. Naito, M., Yamamura, F., Nishikawa, S., and Takahashi, K.: Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultùres. J. Leukocyte Biol. 46: 1–10, 1989.PubMedGoogle Scholar
  361. Nakamura, Y., and Ohta, Y.: Immunohistochemical study of human placental stromal cells. Hum. Pathol. 21: 936–940, 1990.PubMedCrossRefGoogle Scholar
  362. Nanaev, A.K., Rukosuev, V.S., Shirinsky, V.P., Milovanov, A.P., Domogatsky, S.P., Duance, V.C., Bradbury, F.M., Yarrow, P., Gardiner, L., D’Lacey, C., and Ockleford, C.D.: Confocal and conventional immunofluorescent and immunogold electron microscopic localization of collagen types III and IV in human placenta. Placenta 12: 573–595, 1991a.PubMedCrossRefGoogle Scholar
  363. Nanaev, A.K., Shirinsky, V.P., and Birukov, G.: Immunofluorescent study of heterogeneity in smooth muscle cells of human fetal vessels using antibodies to myosin, desmin, and vimentin. Cell Tissue Res. 266: 535–540, 1991b.PubMedCrossRefGoogle Scholar
  364. Nelson, D.M., Smith, C.H., Enders, A.C., and Donohue, T.M.: The non-uniform distribution of acidic components on the human placental syncytial trophoblast surface membrane: a cytochemical and analytical study. Anat. Rec. 184: 159–182, 1976.PubMedCrossRefGoogle Scholar
  365. Nelson, D.M., Enders, A.C., and King, B.F.: Galactosyltransferase activity of the microvillous surface of human placental syncytial trophoblast. Gynecol. Invest. 8: 267–281, 1977.PubMedCrossRefGoogle Scholar
  366. Nelson, D.M., Smith, R.M., and Jarett, L.: Nonuniform distribution and grouping of insulin receptors on the surface of human placental syncytial trophoblast. Diabetes 27: 530–538, 1978.PubMedCrossRefGoogle Scholar
  367. Nelson, D.M., Meister, R.K., Ortman-Nabi, J., Sparks, S., and Stevens, V.C.: Differentiation and secretory activities of cultured human placental cytotrophoblast. Placenta 7: 116, 1986.CrossRefGoogle Scholar
  368. Nelson, D.M., Crouch, E.C., Curran, E.M., and Farmer, D.R.: Trophoblast interaction with fibrin matrix: epithelialization of perivillous fibrin deposits as a mechanism for villous repair in the human placenta. Am. J. Pathol. 136: 855–865, 1990.PubMedGoogle Scholar
  369. Nessmann, C., Huten, Y., and Uzan, M.: Placental correlates of abnormal umbilical Doppler index. Trophoblast Res. 3: 309–323, 1988.Google Scholar
  370. Neumann, J.: Beitrag zur Kenntnis der Blasenmolen und des malignen Deciduoms. Monatsschr. Geburtshilfe Gynakol. 6: 17–36, 1897.Google Scholar
  371. Nikolov, Sp.D., and Schiebler, T.H.: Über das fetale Gefäßsystem der reifen menschlichen Placenta. Z. Zell-forsch. 139: 333–350, 1973.CrossRefGoogle Scholar
  372. Nikolov, Sp.D., and Schiebler, T.H.: Über Endothelzellen in Zottengefäßen der reifen menschlichen Placenta. Acta Anat. (Basel) 110: 338–344, 1981.Google Scholar
  373. Nishihira, M., and Yagihashi, S.: Immunohistochemical demonstration of somatostatin-containing cells in the human placenta. Tohoku J. Exp. Med. 126: 397, 1978.Google Scholar
  374. Nishihira, M., and Yagihashi, S.: Simultaneous detection of immunoreactive hCG- and somatostatin-containing cells and their gestational changes in the human placental villi and decidua. Acta Histochem. Cytochem. 12: 434–442, 1979.Google Scholar
  375. Nishino, E., Matsuzaki, N., Masuhiro, K., Kameda, T., Taniguchi, T., Tagagi, T., Saji, F., and Tanizawa, O.: Trophoblast-derived interleukin-6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J. Clin. Endocrinol. Metab. 71: 436–441, 1990.PubMedCrossRefGoogle Scholar
  376. Ockleford, C.D.: A three dimensional reconstruction of the polygonal pattern on placental coated vesicle membranes. J. Cell Sci. 21: 83–91, 1976.PubMedGoogle Scholar
  377. Ockleford, C.D., and Menon, G.: Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron. J. Cell Sci. 25: 279–291, 1977.PubMedGoogle Scholar
  378. Ockleford, C.D., Wakely, J., and Badley, R.A.: Morpho-genesis of human placental chorionic villi: cytoskeletal, syncytioskeletal and extracellular matrix proteins. Proc. R. Soc. Lond. [Biol.] 212: 305–316, 1981a.CrossRefGoogle Scholar
  379. Ockleford, C.D., Wakely, J., and Badley, R.A.: The human placental chorionic villous tree. Presented at the International SEM Symposium, Nijmegen, The Netherlands, 1981b.Google Scholar
  380. Ockleford, C.D., Wakely, J., Badley, R.A., and Virtanen, I.: Intermediate filament proteins in human placenta. Cell Biol. Int. Rep. 5: 762, 1981c.Google Scholar
  381. Ockleford, C.D., Nevard, C.H.F., Indans, I., and Jones, C.J.P.: Structure and function of the nematosome. J. Cell Sci. 87: 27–44, 1987.PubMedGoogle Scholar
  382. Ogawa, S., Leavy, J., Clauss, M., Koga, S., Shreeniwas, R., Joseph-Silverstein, J., Furie, M., and Stern, D.: Modulation of endothelial cell (EC) function in hypoxia: alterations in cell growth and the response to monocyte-derived mitogenic factors. J. Cell. Biochem. Suppl. 15F: 213, 1991.Google Scholar
  383. Ohlsson, R.: Growth factors, protooncogenes and human placental development. Cell Diff. Dev. 28: 1–16, 1989.Google Scholar
  384. Ohlsson, R., Holmgren, L., Glaser, A., Szpecht, A., and Pfeifer-Ohlsson, S.: Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J. 8: 1993–1999, 1989.PubMedGoogle Scholar
  385. Ohno, M., Martinez-Hernandez, A., Ohno, N., and Kefalides, N A • Laminin M is found in placental basement membranes, but not in basement membranes of neoplastic origin. Connect. Tissue Res. 15: 199–207, 1986.PubMedCrossRefGoogle Scholar
  386. Okudaira, Y., and Hayakawa, K.: Electron microscopic study on the surface coat of the human placental trophoblast. J. Electron Microsc. 24: 279–281, 1975.Google Scholar
  387. Oliveira, L.H.S., Leandro, S.V., Fonseca, M.E.F., and Dias, L.M.S.: A new technique for the isolation of placental phagocyte cells and a description of their macrophage properties after in vitro culture. Braz. J. Med. Biol. Res. 19: 249–255, 1986.PubMedGoogle Scholar
  388. Ong, P.J., and Burton, G.J.: Thinning of the placental villous membrane during maintenance in hypoxic organ culture: structural adaptation or syncytial degeneration ? Eur. J. Obstet. Gynäkol. Reprod. Biol. 39: 103–110, 1991.CrossRefGoogle Scholar
  389. Orgnero de Gaisan, E., Aoki, A., Heinrich, D., and Metz, J.: Permeability studies of the guinea pig placental labyrinth. II. Tracer permeation and freeze fracture of fetal endothelium. Anat. Embryol. 171: 297–304, 1985.CrossRefGoogle Scholar
  390. Ortmann, R.: Zur Frage der Zottenanastomosen in der menschlichen Placenta. Z. Anat. Entwicklungsgesch. 111: 173–185, 1941.CrossRefGoogle Scholar
  391. Ortmann, R.: Untersuchungen an einer in situ fixierten menschlichen Placenta vom 4.-5. Schwangerschaftsmonat. Arch. Gynäkol. 172: 161–172, 1942.CrossRefGoogle Scholar
  392. Oswald, B., and Gerl, D.: Die Mikrofibrinoidablagerungen in der menschlichen Placenta. Acta Histochem. 42: 356–359, 1972.PubMedGoogle Scholar
  393. Panigel, M.: Comparative physiological and pharmacological aspects of placental permeability and hemodynamics in the non-human primate placenta and in the isolated perfused human placenta. Excerpta Med. 170: 13, 1968.Google Scholar
  394. Panigel, M., and Anh, J.N.H.: Ultrastructure des villosites placentaires humains. Pathol. Biol. (Paris) 12: 927–949, 1964.Google Scholar
  395. Panigel, M., and Myers, R.E.: Histological and ultrastructural changes in rhesus monkey placenta following interruption of fetal placental circulation by fetectomy or interplacental umbilical vessels ligation. Acta Anat. (Basel) 81: 481–506, 1972.Google Scholar
  396. Parmley, R.T., Takagi, M., and Denys, F.R.: Ultrastructural localization of glycoaminoglycans in human term placenta. Anat. Rec. 210: 477–484, 1984.PubMedCrossRefGoogle Scholar
  397. Parmley, R.T., Barton, J.C., and Conrad, M.C.: Ultra-structural localization of transferrin, transferrin receptor, and iron-binding sites on human placental and duodenal microvilli. Br. J. Haematol. 60: 81–89, 1985.PubMedCrossRefGoogle Scholar
  398. Peles, E., Bacus, S.S., Koski, R.A., Lu, H.S., Wen, D., Ogden, S.G., Levy, R.B., and Yarden, Y.: Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205–216, 1992.PubMedCrossRefGoogle Scholar
  399. Pescetto, G.: Sulla presenza di elementi granulosi basofili metacromatici nella placenta fetale umana. Biol. Lat. (Milan) 2: 744–757, 1950.Google Scholar
  400. Pescetto, G.: Osservazioni istologiche e istochimiche sulle cellule di Hofbauer del villo coriale umano. Riv. Biol. 44: 231–241, 1952.PubMedGoogle Scholar
  401. Peter, K.: Placenta-Studien. 1. Zotten und ZwischenZottenräume zweier Placenta aus den letzten Monaten der Schwangerschaft. Z. Mikrosk. Anat. Forsch. 53: 142–174, 1943.Google Scholar
  402. Peter, K.: Placenta-Studien. 2. Verlauf, Verzweigung und Verankerung der Chorionzottenstämme und ihrer Äste in geborenen Placenten. Z. Mikrosk. Anat. Forsch. 56: 129172, 1951.Google Scholar
  403. Petraglia, F.: Placental neurohormones: secretion and physiological implications. Mol. Cell. Endocrinol. 78: C109–C112, 1991.PubMedCrossRefGoogle Scholar
  404. Petraglia, F., Sawchenko, P., Lim, A.T.W., Rivier, J., and Vale, W.: Localization, secretion, and action of inhibin in human placenta. Science 237: 187–189, 1987.PubMedCrossRefGoogle Scholar
  405. Petraglia, F., Calza, L., Giardino, L., Sutton, S., Marrama, P., Rivier, J., Genazzani, A.R., and Vale, W.: Identification of immunoreactive neuropeptide-y in human placenta: localization, secretion, and binding sites. Endocrinology 124: 2016–2022, 1989.PubMedCrossRefGoogle Scholar
  406. Petraglia, F., Volpe, A., Genazzani, A.R., Rivier, J., Sawchenko, P.E., and Vale, W.: Neuroendocrinology of the human placenta. Front. Neuroendocrinol. 11: 6–37, 1990.Google Scholar
  407. Petraglia, F., Garuti, G., Calza, L., Roberts, V., Giardino, L., Genazzani, A.R., and Vale, W • Inhibin subunits in human placenta: localization and messenger ribonucleic acid levels during pregnancy. Am. J. Obstet. Gynecol. 165: 750–758, 1991.PubMedGoogle Scholar
  408. Petraglia, F., Woodruff, T.K., Botticelli, G., Botticelli, A., Gernazzani, A.R., Mayo, K.E., and Vale, W.: Gonadotropin-releasing hormone, inhibin, and activin in human placenta: evidence for a common cellular localization. J. Clin. Endocrinol. Metab. 74: 1184–1188, 1992.PubMedCrossRefGoogle Scholar
  409. Pfister, C., Scheuner, G., Bahn, H., and Stiller, D • Immunhistochemischer Nachweis von Fibronectin in der menschlichen Placenta. Acta Histochem. 84: 83–91, 1988.PubMedCrossRefGoogle Scholar
  410. Pfister, C., Scheuner, G., and Städtler, N.: Fluorescenz-und polarisationsoptische Untersuchungen zur qualitativen und quantitativen Erfassung neutraler Carbohydrate in Basalmembranen menschlicher Placenta-Zotten. Acta Histochem. 85: 29–37, 1989.PubMedCrossRefGoogle Scholar
  411. Pierce, G.B., and Midgley, A.R.: The origin and function of human syncytiotrophoblast giant cells. Am. J. Pathol. 43: 153–173, 1963.PubMedGoogle Scholar
  412. Pinto, A., Sorrentino, R., Sorrentino, P., Guerritore, T., Miranda, L., Biondi, A., and Martinelli, P.: Endothelial-derived relaxing factor released by endothelial cells of human umbilical vessels and its impairment in pregnancy-induced hypertension. Am. J. Obstet. Gynecol. 164: 507513, 1991.Google Scholar
  413. Piotrowicz, B., Niebroj, T.K., and Sieron, G.: The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem. Cytochem. 7: 435–444, 1969.Google Scholar
  414. Piotrowicz, R.S., Orchekowski, D.J., Nugent, D.J., Yamada, K.Y., and Kunicki, T.J.: Glycoprotein le-IIa functions as an activation-independent fibronectin receptor on human platelets. J. Cell Biol. 106: 1359–1364, 1988.PubMedCrossRefGoogle Scholar
  415. Prosdocimi, O.: Richerche istochimiche per la localizzazione delle sostanze gonadotrope nel tessuto coriale normale, nella mola vescicolare e corioepitelioma. Riv. Ostet. Ginecol. 35: 133, 1953.Google Scholar
  416. Radtke, K.-P., Wenz, K.-H., and Heimburger, N.: Isolation of plaminogen activator inhibitor-2 (PAI-2) from human placenta: evidence for vitronectin/PAI-2 complexes in human placenta extract. Biol. Chem. Hoppe Seyler 371: 1119–1127, 1990.PubMedCrossRefGoogle Scholar
  417. Rao, C.V., Carman, F.R., Chegini, N., and Schultz, G.S.: Binding sites for epidermal growth factor in human fetal membranes. J. Clin. Endocrinol. Metab. 58: 1034–1042, 1984.PubMedCrossRefGoogle Scholar
  418. Rao, C.V., Ramani, N., Chegini, N., Stadig, B.K., Carman, F.R., Jr., Woost, P.G., Schultz, G.S., and Cook, C.L.: Topography of human placental receptors for epidermal growth factor. J. Biol. Chem. 260: 1705–1710, 1985.PubMedGoogle Scholar
  419. Reale, E., Wang, T., Zaccheo, D., Maganza, C., and Pescetto, G.: Junctions on the maternal blood surface of the human placental syncytium. Placenta 1: 245–258, 1980.PubMedCrossRefGoogle Scholar
  420. Rhodin, J., and Terzakis, J.: The ultrastructure of the human fullterm placenta. J. Ultrastruct. Res. 6: 88–106, 1962.PubMedCrossRefGoogle Scholar
  421. Richart, R.: Studies of placental morphogenesis. I. Radio-autographic studies of human placenta utilizing tritiated thymidine. Proc. Soc. Exp. Biol. Med. 106: 829–831, 1961.Google Scholar
  422. Risau, W., Drexler, H., Mironov, V., Smits, A., Stegbahn, A., Funa, K., and Heldin, C.-H.: Platelet-derived growth factor is angiogenic in vivo. Growth Factors 7: 261–266, 1992.PubMedCrossRefGoogle Scholar
  423. Röckelein, G., and Hey, A.: Ultrastrukturelle Untersuchungen der Vakuolenbildung in arteriellen Choriongefäßen der reifen menschlichen Plazenta. Z. Geburtshilfe Perinatol. 189: 65–68, 1985.PubMedGoogle Scholar
  424. Rodway, H.E., and Marsh, F.: A study of Hofbauer’s cells in human placenta. J. Obstet. Gynaecol. Br. Emp. 63: 111–115, 1956.PubMedCrossRefGoogle Scholar
  425. Rovasio, R.A., and Monis, B.: Cytochemical changes of a glycocalix of human placenta with maturation. Experientia 29: 1115–1118, 1973.PubMedCrossRefGoogle Scholar
  426. Rukosuev, V.S.: Immunofluorescent localization of collagen types I, III, IV, V, fibronectin, laminin, entactin, and heparan sulphate proteoglycan in human immature placenta. Experientia 48: 285–287, 1992.PubMedCrossRefGoogle Scholar
  427. Russel, S.W., and Pace, J.L.: The effects of interferons on macrophages and their precursors. Vet. Immunol. Immunopathol. 15: 129–165, 1987.CrossRefGoogle Scholar
  428. Saijonmaa, O., Laatikainen, T., and Wahlström, T.: Corticotrophin-releasing factor in human placenta: localization, concentration and release in vitro. Placenta 9: 373–385, 1988.PubMedCrossRefGoogle Scholar
  429. Sakakibara, R., Yokoo, Y., Yoshikoshi, K., Tominaga, N., Eida, K., and Ishiguro, M.: Subcellular localization of intracellular form of human chorionic gonadotropin in first trimester placenta. J. Biochem. 102: 993–1001, 1987.PubMedGoogle Scholar
  430. Sakata, M.: The study on the fetal placental circulation. Shikoku Acta Med. 16: 796–812, 1960.Google Scholar
  431. Sakbun, V., Koay, E.S.C., and Bryant-Greenwood, G.D.: Immunocytochemical localization of prolactin and relaxin C-peptide in human decidua and placenta. J. Clin. Endocrinol. Metab. 65: 339–343, 1987.PubMedCrossRefGoogle Scholar
  432. Sala, M.A., Matheus, M., and Valeri, V.: Regional variation in the frequency of fibrinoid degeneration in the human term placenta. Z. Geburtshilfe Perinatol. 186: 80–81, 1982.PubMedGoogle Scholar
  433. Salas, S.P., Power, R.F., Singleton, A., Wharton, J., Polak, J.M., and Brown, J.: Heterogeneous binding sites for a-atrial natriuretic peptide in human umbilical cord and placenta. Am. J. Physiol. 261: R633 — R638, 1991.PubMedGoogle Scholar
  434. Salvaggio, A.T., Nigogosyan, G., and Mack, H.C.: Detection of trophoblast in cord blood and fetal circulation. Am. J. Obstet. Gynecol. 80: 1013–1021, 1960.PubMedGoogle Scholar
  435. Santiago-Schwarz, F., and Fleit, H.B.: Identification of non-adherent mononuclear cells in human cord blood that differentiate into macrophages. J. Leukocyte Biol. 43: 51–59, 1988.PubMedGoogle Scholar
  436. Scheuner, G.: Über die Verankerung der Nabelschnur an der Plazenta. Morphol. Jahr. 106: 73–89, 1972.Google Scholar
  437. Scheuner, G.: Zur Morphologie der materno-fetalen Stoffwechselschranke in der menschlichen Plazenta. Zentralbl. Gynäkol. 97: 288–300, 1975.PubMedGoogle Scholar
  438. Scheuner, G., and Hutschenreiter, J.: Strukturanalysen an Basalmembranen. Gefäßwand Blutplasma 4: 217–218, 1972.Google Scholar
  439. Scheuner, G., and Hutschenreiter, J.: Ergebnisse histophysikalischer Untersuchungen zur submikroskopischen Struktur von Basalmembranen. Anat. Anz. 71: 1213–1216, 1977.Google Scholar
  440. Scheuner, G., Ruckhäberle, K.-E., Flemming, G., and Reissig, D.: Submikroskopischer Nachweis orientierter Proteinfilamente im Plasmoditrophoblasten der menschlichen Plazenta. Anat. Anz. 147: 145–151, 1980.PubMedGoogle Scholar
  441. Schiebler, T.H., and Kaufmann, P.: Über die Gliederung der menschlichen Placenta. Z. Zellforsch. 102: 242–265, 1969.PubMedCrossRefGoogle Scholar
  442. Schiebler, T.H., and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 51–100. Georg Thieme, Stuttgart, 1981.Google Scholar
  443. Schmidt, W.: Der Feinbau der reifen menschlichen Eihäute. Z. Anat. Entwicklungsgesch. 119: 203–222, 1956.PubMedCrossRefGoogle Scholar
  444. Schönfelder, G., Graf, R., and Schmidt, H.H.H.W.: A possible regulation of the extravascular contractile system in human placenta by nitric oxide synthase immunoreactive cells. Placenta 14: A69, 1993.CrossRefGoogle Scholar
  445. Schröder, H., Nelson, P., and Power, B.: Fluid shift across the placenta. I. The effect of dextran T40 in the isolated guinea pig placenta. Placenta 3: 327–338, 1982.PubMedCrossRefGoogle Scholar
  446. Schroeder van der Kolk, J.L.C.: Waarnemigen over het Maaksel van de Menschlijke Placenta. Sulpke, Amsterdam, 1851.Google Scholar
  447. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomie. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., pp. 199–207. Thieme Verlag, Stuttgart, 1981.Google Scholar
  448. Schweikhart, G., and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Ultrastruktur des Syncytiotrophoblasten. Arch. Gynecol. 222: 213–230, 1977.Google Scholar
  449. Scott, S.M., Buenaflor, G.G., and Orth, D.N.:.Immunoreactive human epidermal growth factor concentrations in amniotic fluid, umbilical artery and vein serum, and placenta in full-term and preterm infants. Biol. Neonate 56: 246–251, 1989.PubMedCrossRefGoogle Scholar
  450. Sedmak, D.D., Davis, D.H., Singh, U., van de Winkel, J.G.J., and Anderson, C.L.: Expression of IgG Fc receptor antigens in placenta and on endothelial cells in humans: an immunohistochemical study. Am. J. Pathol. 138: 175–181, 1991.PubMedGoogle Scholar
  451. Sen, D.K., Kaufmann, P., and Schweikhart, G.: Classification of human placental villi. II. Morphometry. Cell Tissue Res. 200: 425–434, 1979.Google Scholar
  452. Shreeniwas, R., Ogawa, S., Cozzolino, F., Torcia, G., Braunstein, N., Butura, C., Brett, J., Lieberman, H.B., Furie, M.B., and Joseph-Silverstein, J.: Macrovascular and microvascular endothelium during long-term hypoxia: alterations in cell growth, monolayer permeability, and cell 112 7. Basic Structure of the Villous Trees surface coagulant properties. J. Cell. Physiol. 146: 8–17, 1991PubMedCrossRefGoogle Scholar
  453. Siddall, R.S., and Hartman, F.W.: Infarcts of the placenta; study of seven hundred consecutive placentas. Am. J. Obstet. Gynecol. 12: 683–699, 1926.Google Scholar
  454. Sideri, M., de Virgiliis, G., Rainoldi, R., and Remotti, G.: The ultrastructural basis of the nutritional transfer: evidence of different patterns in the plasma membranes of the multilayered placental barrier. Trophoblast Res. 1: 1526, 1983.Google Scholar
  455. Simpson, R.A., Mayhew, T.M., and Barnes, P.R.: From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the dissector. Placenta 13: 501–512, 1992.PubMedCrossRefGoogle Scholar
  456. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, R.L.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987.PubMedCrossRefGoogle Scholar
  457. Smith, C.H., Nelson, D.M., King, B.F., Donohue, T.M., Ruzycki, St.M., and Kelley, L.K.: Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical and physiologic study. Am. J. Obstet. Gynecol. 128: 190–196, 1977.PubMedGoogle Scholar
  458. Snoeck, J.: Le Placenta Humain. Masson, Paris, 1958. Sonnenberg, A., Modderman, P.W., and Hogervorst, F.: Laminin receptor on platelets is the integrin VLA-6. Nature 336: 487–489, 1988.CrossRefGoogle Scholar
  459. Sorokin, S.P., and Hoyt, R.F., Jr.: Pure population of non-monocyte derived macrophages arising in organ cultures of embryonic rat lungs. Anat. Rec. 217: 35–52, 1987.PubMedCrossRefGoogle Scholar
  460. Sorokin, S.P., and Hoyt, R.F., Jr.: Macrophage development. I. Rationale for using Griffonia simplicifolia isolectin B4 as a marker for the line. Anat. Rec. 232: 520–526, 1992.PubMedCrossRefGoogle Scholar
  461. Sorokin, S.P., Hoyt, R.F., Jr., Blunt, D.G., and McNelly, N.A.: Macrophage development. II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232: 527–550, 1992a.PubMedCrossRefGoogle Scholar
  462. Sorokin, S.P., McNelly, N.A., Blunt, D.G., and Hoyt, R.F., Jr.: Macrophage development. III. Transformation of pulmonary macrophages from precursors in fetal lungs and their later maturation in organ culture. Anat. Rec. 232: 551–571, 1992b.PubMedCrossRefGoogle Scholar
  463. Spanner, R.: Mütterlicher und kindlicher Kreislauf der menschlichen Placenta und seine Strombahnen. Z. Anat. Entwicklungsgesch. 105: 163–242, 1935.CrossRefGoogle Scholar
  464. Spanner, R.: Zellinseln und Zottenepithel in der zweiten Hälfte der Schwangerschaft. Morphol. Jahr. 86: 407–461, 1941.Google Scholar
  465. Sporn, M., and Roberts, A.: The transforming growth factor-betas: past, present and future. Ann. N. Y. Acad. Sci. 593: 1–6, 1990.PubMedCrossRefGoogle Scholar
  466. Stark, J., and Kaufmann, P.: Protoplasmatische Trophoblastabschnürungen in den mütterlichen Kreislauf bei normaler und pathologischer Schwangerschaft. Arch. Gynecol. 210: 375–385, 1971.Google Scholar
  467. Stark, J., and Kaufmann, P.: Trophoblastische Plasmapolypen und regressive Veränderungen am Zottentrophoblasten der menschlichen Placenta. Arch. Gynecol. 212: 51–67, 1972.Google Scholar
  468. Stark, J., and Kaufmann, P.: Infarktgenese in der Placenta. Arch. Gynecol. 217: 189–208, 1974.Google Scholar
  469. Stengelin, S., Stamenkovic, I., and Seed, B.: Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning. EMBO J. 7: 1053–1059, 1988.PubMedGoogle Scholar
  470. Stewart, J.L., Jr., Sano, M.E., and Montgomery, T.L.: Hormone secretion by human placenta grown in tissue culture. J. Clin. Endocrinol. 8: 175–188, 1948.CrossRefGoogle Scholar
  471. Stieve, H.: Neue Untersuchungen über die Placenta, besonders über die Entstehung der Placentasepten. Arch. Gynecol. 161: 160–167, 1936.Google Scholar
  472. Stieve, H.: Das Zottenraumgitter der reifen menschlichen Plazenta. Z. Geburtshilfe Gynakol. 122: 289–316, 1941.Google Scholar
  473. Strauss, L., Goldenberg, N., Hiroto, K., and Okudaira, Y.: Structure of the human placenta; with observations on ultrastructure of the terminal chorionic villus. Birth Defects 1: 13–26, 1965.Google Scholar
  474. Stulc, J.: Extracellular transport pathways in the haemochorial placenta. Placenta 10: 113–119, 1989.PubMedCrossRefGoogle Scholar
  475. Stulc, J., Friederich, R., and Jiricka, Z.: Estimation of the equivalent pore dimensions in the rabbit placenta. Life Sci. 8: 167–180, 1969.PubMedCrossRefGoogle Scholar
  476. Sutton, L., Gadd, M., Mason, D.Y., and Redman, C.W.G.: Cells bearing class II MHC antigens in the human placenta and amniochorion. Immunology 58: 23–29, 1986.PubMedGoogle Scholar
  477. Sutton, L.N., Mason, D.Y., and Redman, C.W.G.: Isolation and characterization of human fetal macrophages from placenta. Clin. Exp. Immunol. 78: 437–443, 1989.PubMedGoogle Scholar
  478. Taylor, R.N., and Williams, L.T.: Developmental expression of platelet-derived growth factor and its receptor in the human placenta. Mol. Endocrinol. 2: 627–632, 1988.PubMedCrossRefGoogle Scholar
  479. Taylor-Papadimitriou, J., and Rozengurt, E.A.: Interferons as regulators of cell growth and differentiation. In, Interferons. Their Impact in Biology and Medicine. J. TaylorPapadimitriou, ed., pp. 81–98. Oxford University Press, Oxford, 1985.Google Scholar
  480. Teasdale, F., and Jean-Jacques, G.: Morphometry of the microvillous membrane of the human placenta in maternal diabetes mellitus. Placenta 7: 81–88, 1986.PubMedCrossRefGoogle Scholar
  481. Tedde, G.: Ultrastruttura del villo placentare umano nella seconda meta della gravidanza. Arch. Ital. Anat. Embriol. 75: 101–131, 1970.PubMedGoogle Scholar
  482. Tedde, G., and Tedde Piras, A.: Mitotic index of the Langhans’ cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat. (Basel) 100: 114–119, 1978.Google Scholar
  483. Tedde, G., Tedde Piras, A., and Berta, R.: A new structural pattern of the human trophoblast: the syncytial units [abstract 117]. 11th Rochester Trophoblast Conference, Abstract Booklet, 1988a.Google Scholar
  484. Tedde, G., Tedde Piras, A., and Fenu, G.: Demonstration of an intercellular pathway of transport in the human trophoblast [abstract 77]. 11th Rochester Trophoblast Conference, Abstract Booklet, 1988b.Google Scholar
  485. Ten Berge, B.S.: Merkwaardige cellen in chorionvlokken. Medical thesis, University of Utrecht, 1922.Google Scholar
  486. Tenney, B., and Parker, F.: The placenta in toxemia of pregnancy. Am. J. Obstet. Gynecol. 39: 1000–1005, 1940.Google Scholar
  487. Thomsen, K.: Zur Morphologie und Genese der sogenannten Plazentarinfarkte. Arch. Gynecol. 185: 221–247, 1954.Google Scholar
  488. Thomsen, K., and Berle, P.: Placentarbefunde bei Rh-Inkompatibilität. Arch. Gynecol. 192: 628–643, 1960.Google Scholar
  489. Thorn, W., Kaufmann, P., and Müldener, B.: Kohlenhydratumsatz, Energiedefizit und Plasmapolypenbildung in der Placenta nach Vergiftung mit Monojodacetat und NaF. Arch. Gynecol. 216: 175–183, 1974.Google Scholar
  490. Thorn, W., Kaufmann, P., Müldener, B., and Freese, U.: Einfluß von 2,4—Dinitrophenol, Monojodacetat, Natriumfluorid und Hypoxie auf Plasmapolypenbildung in der Placenta von Meerschweinchen. Arch. Gynecol. 221: 203–210, 1976.Google Scholar
  491. Thornburg, K., and Faber, J.J.: Transfer of hydrophilic molecules by placenta and yolk sac of the guinea pig. Am. J. Physiol. 233: C111 - C124, 1977.PubMedGoogle Scholar
  492. Thorsby, E.: The role of HLA in T cell activation. Hum. Immunol. 9: 1–7, 1984.PubMedCrossRefGoogle Scholar
  493. Tominaga, R., and Page, E.W.: Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol. 94: 679–685, 1966.PubMedGoogle Scholar
  494. Toth, F., Paal, M., Nemeth, J., and Doemoetoeri, J.: Histo chemical studies of fibrinoid, mucopolysaccharides and chorionic gonadotrophin in the normal and pathologic human placenta. Acta Morphol. Acad. Sci. Hung. 21: 89–104, 1973.Google Scholar
  495. Toth, F.D., Juhl, C., Norskov-Lauritsen, N., MosborgPetersen, P., and Ebbesen, P.: Interferon production by cultured human trophoblast induced with double stranded polyribonucleotide. J. Reprod. Immunol. 17: 217–227, 1990.PubMedCrossRefGoogle Scholar
  496. Toth, F.D., Norskov-Lauritsen, N., Juhl, C., and Ebbesen, P.: Human trophoblast interferon: pattern of response to priming and superinduction of purified term trophoblast and choriocarcinoma cells. J. Reprod. Immunol 19: 55–67, 1991.PubMedCrossRefGoogle Scholar
  497. Trudinger, B.J., Giles, W.B., Cook, C.M., Bombardieri, J., and Collins, L.: Uteroplacental blood flow velocity-time waveforms in normal and complicated pregnancy. Br. J. Obstet. Gynaecol. 92: 23–30, 1985.PubMedGoogle Scholar
  498. Truman, P., Wakerfield, J.St.J., and Ford, H.C.: Microvilli of the human term placenta. Biochem. J. 196: 121–132, 1981.PubMedGoogle Scholar
  499. Truman, P., and Ford, H.C.: The brush border of the human term placenta. Biochim. Biophys. Acta 779: 139–160, 1984.PubMedCrossRefGoogle Scholar
  500. Ulesko-Stroganova, K.: Beitraege zur Lehre vom mikroskopischen Bau der Placenta. Monatsschr. Geburtshilfe Gynäkol. 3: 207, 1896.Google Scholar
  501. Unnikumar, K.R., Wegmann, R., and Panigel, M • Immunohistochemical profile of the human placenta: studies on localization of prolactin, human chorionic gonadotropin, human placental lactogen, renin and oxytocin. Cell. Mol. Biol. 34: 697–710, 1988.PubMedGoogle Scholar
  502. Uren, S., and Boyle, W.: Isolation of macrophages from human placenta. J. Immunol. Methods 78: 25–34, 1985.PubMedCrossRefGoogle Scholar
  503. Uren, S.J., and Boyle, W.: Class II MCH antigen-positive macrophages from human placentae suppress strong MLR and CML reations. Cell. Immunol. 125: 235–246, 1990.PubMedCrossRefGoogle Scholar
  504. Usuki, K., Norberg, L., Larsson, E., Miyazono, K., Hellman, U., Wernstedt, C., Rubin, K., and Heldin, C.-H.: Localization of platelet-derived endothelial cell growth factor in human placenta and purification of an alternatively processed form. Cell Regul. 1: 577–584, 1990.PubMedGoogle Scholar
  505. Vacek, Z.: Electron microscopic observations on the filaments in the trophoblast of the human placenta. Folia Morphol. (Praha) 17: 382–388, 1969.Google Scholar
  506. Vacek, Z.: Derivation and ultrastructure of the stroma cells of the human chorionic villus. Folia Morphol. (Praha) 18: 113, 1970.Google Scholar
  507. Vanderpuye, O., and Smith, C.H.: Proteins of the apical and basal plasma membranes of the human placental syncytiotrophoblast: immunochemical and electrophoretic studies. Placenta 8: 591–608, 1987.PubMedCrossRefGoogle Scholar
  508. Van Furth, R.: Current view on the mononuclear phagocyte system. Immunobiology 161: 178–185, 1982.PubMedCrossRefGoogle Scholar
  509. Velardo, J.T., and Rosa, C.: Female genital system. In, Handbuch der Histochemie. Vol. 7. 3rd Ed. W. Graumann and K. Neumann, eds. Fischer, Stuttgart, 1963.Google Scholar
  510. Villee, C.A., ed.: The Placenta and Fetal Membranes. Williams and Wilkins, Baltimore, 1960.Google Scholar
  511. Virchow, R.: Die krankhaften Geschwülste. Vol. I. Hirschwald, Berlin, 1863.Google Scholar
  512. Virchow, R.: Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 4th Ed. Hirschwald, Berlin, 1871.Google Scholar
  513. Virtanen, I., Laitinen, L., and Vartio, T.: Differential expression of the extra domain-containing form of cellular fibronectin in human placentas at different stages of maturation. Histochemistry 90: 25–30, 1988.PubMedCrossRefGoogle Scholar
  514. Voigt, S., Kaufmann, P., and Schweikhart, G.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. II. Morphometrische Untersuchungen zum Einfluß des Fixationsmodus. Arch. Gynecol. 226: 347–362, 1978.PubMedCrossRefGoogle Scholar
  515. Wachstein, M., Meagher, J.G., and Ortiz, J.: Enzymatic histochemistry of the term human placenta. Am. J. Obstet. Gynecol. 87: 13–26, 1963.PubMedGoogle Scholar
  516. Wada, H.G., Gornicki, S.Z., and Sussman, H.H.: The sialoglycoprotein subunits of human placental brush border membranes characterized by two-dimensional electrophoresis. J. Supramol. Struct. 6: 473–484, 1977.PubMedCrossRefGoogle Scholar
  517. Wada, H.G., Hass, P.E., and Sussman, H.H.: Characterization of antigenic sialoglycoprotein subunits of the placental brush border membranes: comparison with liver and kidney membrane subunits by two-dimensional electrophoresis. J. Supramol. Struct. 10: 287–305, 1979.PubMedCrossRefGoogle Scholar
  518. Wainwright, S.D., and Wainwright, L.K.: Preparation of human placental villous surface membrane. Nature 252: 302–303, 1974.PubMedCrossRefGoogle Scholar
  519. Wang, E., Pfeffer, L.M., and Tamm, I.: Interferon increases the abundance of submembranous microfilaments in HeLaS3 cells in suspension culture. Proc. Natl. Acad. Sci. U.S.A. 78: 6281–8285, 1981.PubMedCrossRefGoogle Scholar
  520. Wang, T., and Schneider, J.: Cellular junctions on the free surface of human placental syncytium. Arch. Gynecol. 240: 211–216, 1987.PubMedCrossRefGoogle Scholar
  521. Wasserman, L., Abramovici, A., Shlesinger, H., Goldman, J.A., and Allalouf, D.: Histochemical localization of acidic glycosaminoglycans in normal human placentae. Placenta 4: 101–108, 1983a.PubMedCrossRefGoogle Scholar
  522. Wasserman, L., Shlesinger, H., Goldman, J.A., and Allalouf, D.: Pattern of glycosaminoglycan distribution in tissue and blood vessels of human placenta. Gynecol. Obstet. Invest. 15: 242–250, 1983b.PubMedCrossRefGoogle Scholar
  523. Weinberg, P.C., Cameron, I.L., Parmley, T., Jeter, J.R., and Pauerstein, C.J.: Gestational age and placental cellular replication. Obstet. Gynecol. 36: 692–696, 1970.PubMedGoogle Scholar
  524. Werb, Z., Hembry, R.M., Murphy, G., and Aggeler, J.: Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture. J. Cell Biol. 102: 697–702, 1986.PubMedCrossRefGoogle Scholar
  525. Werner, C., and Bender, H.G.: Phasenkontrastmikroskopie der Plazenta. In, Neue Erkenntnisse über die Orthologie und Pathologie der Plazenta. H.J. Födisch, ed., pp. 63–71. Enke, Stuttgart, 1977.Google Scholar
  526. Westermark, B., Siegbahn, A., Heldin, C.-H., and Claesson, W.L.: B-Type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase. Proc. Natl. Acad. Sci. U.S.A. 87: 128–132, 1990.PubMedCrossRefGoogle Scholar
  527. Whyte, A.: Lectin binding by microvillous membranes and coated-pit regions of human syncytial trophoblast. Histochem. J. 12: 599–607, 1980.PubMedCrossRefGoogle Scholar
  528. Wielenga, G., and Willighagen, R.G.J.: The histochemistry of the syncytiotrophoblast and the stroma in the normal full-term placenta. Am. J. Obstet. Gynecol. 84: 1059–1064, 1962.PubMedGoogle Scholar
  529. Wigglesworth, J.S.: The gross and microscopic pathology of the prematurely delivered placenta. J. Obstet. Gynaecol. Br. Commonw. 69: 934–943, 1962.CrossRefGoogle Scholar
  530. Wigglesworth, J.S.: Morphological variations in the insufficient placenta. J. Obstet. Gynaecol. Br. Commonw. 71: 871–884, 1964.PubMedCrossRefGoogle Scholar
  531. Wilkes, B.M., Mento, P.F., Hollander, A.H., Maita, M.E., Sung, S.Y., and Girardi, E.P.: Endothelin receptors in human placenta: relationship to vascular resistance and thromboxane release. Am. J. Physiol. 258: E864 — E870, 1990.PubMedGoogle Scholar
  532. Wilkin, P.: Pathologie du Placenta. Masson, Paris, 1965.Google Scholar
  533. Wilson, C.B., Haas, J.E., and Weaver, W.M.: Isolation, purification and characteristics of mononuclear phagocytes from human placentas. J. Immunol. Methods 56: 305–317, 1983.PubMedCrossRefGoogle Scholar
  534. Winterhager, E.: Dynamik der Zellmembran: Modellstudien während der Implantationsreaktion beim Kaninchen. Medical thesis, Technologic University of Aachen, 1985.Google Scholar
  535. Wislocki, G.B., and Bennett, H.S.: Histology and cytology of the human and monkey placenta, with special reference to the trophoblast. Am. J. Anat. 73: 335–449, 1943.CrossRefGoogle Scholar
  536. Wood, G., and King, G.R., Jr.: Trapping antigen-antibody complexes within the human placenta. Cell Immunol. 69: 347–362, 1982.PubMedCrossRefGoogle Scholar
  537. Wood, G., Reynard, J., Krishnan, E., and Racela, L • Immunobiology of the human placenta. I. IgGFc receptors in trophoblastic villi. Cell. Immunol. 35: 191–204, 1978a.PubMedCrossRefGoogle Scholar
  538. Wood, G., Reynard, J., Krishnan, E., and Racela, L • Immunobiology of the human placenta. II. Localization of macrophages, in vivo bound IgG and C3. Cell Immunol. 35: 205–216, 1978b.PubMedCrossRefGoogle Scholar
  539. Wood, G.S., Warner, N.L., and Warnke, R.A.: Anti-Leu3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J. Immunol. 131: 212–216, 1983.PubMedGoogle Scholar
  540. Wood, G.S., Turner, R.R., Shiurba, R.A., Eng, L., and Warnke, R.A.: Human dendritic cells and macrophages: In situ immunophenotypic definition of subsets that exhibit specific morphologic and microenvironmental characteristics. Am. J. Pathol. 119: 73–82, 1985.PubMedGoogle Scholar
  541. Wood, G.W.: Mononuclear phagocytes in the human placenta. Placenta 1: 113–123, 1980.PubMedCrossRefGoogle Scholar
  542. Wright, C., Angus, B., Nicholson, S., Sainsbury, J.R., Cairns, J.C., Gullick, W.J., Kelley, P., Harris, A.L., and Home, C.H.W.: Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res. 49: 2087–2090, 1989.PubMedGoogle Scholar
  543. Wright, S.D., Ramos, R.A., Tobias, P.S., and Ulevitch, R.J.: CD 14, a receptor for complexes of lipopolysaccaride (LPS) and LPS binding protein. Science 249: 1431–1433, 1990.PubMedCrossRefGoogle Scholar
  544. Wynn, R.M.: Derivation and ultrastructure of the so-called Hofbauer cell. Am. J. Obstet. Gynecol. 97: 235–248, 1967a.PubMedGoogle Scholar
  545. Wynn, R.M.: Fetomaternal cellular relations in the human basal plate: an ultrastructural study of the placenta. Am. J. Obstet. Gynecol. 97: 832–850, 1967b.PubMedGoogle Scholar
  546. Wynn, R.M.: Fine structure of the placenta. In, Handbook of Physiology, Section 7, Endocrinology. R.O. Greep and E.B. Astwood, eds., pp. 261–276. American Physiological Society, Washington, DC, 1973.Google Scholar
  547. Wynn, R.M.: Fine structure of the placenta. In, The Placenta and Its Maternal Supply Line. P. Gruenwald, ed., pp. 5679. Medical and Technical Publishing, Lancaster, 1975.Google Scholar
  548. Yagel, S., Hurwitz, A., Rosenn, B., and Keizer, N.: Progesterone enhancement of prostaglandin E2 production by fetal placental macrophages. Am. J. Reprod. Immunol. 14: 45–48, 1987.Google Scholar
  549. Yallampalli, C., and Garfield, R.E.: Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 169: 1316–1320, 1993.PubMedGoogle Scholar
  550. Yamada, T., Isemura, M., Yamaguchi, Y., Munakata, H., Hayashi, N., and Kyogoku, M.: Imunohistochemical localization of fibronectin in the human placentas at their different stages of maturation. Histochemistry 86: 579–584, 1987.PubMedCrossRefGoogle Scholar
  551. Yamaguchi, Y., Mann, D.M., and Ruoslahti, E.: Negative regulation of transforming growth factor-13 by the proteoglycan decorin. Nature 346: 281–284, 1990.PubMedCrossRefGoogle Scholar
  552. Yeh, C.-J., Mühlhauser, J., Hsi, B.-I., Castellucci, M., and Kaufmann, P.: The expression of receptors for epidermal growth factor and transferrin on human trophoblast. Placenta 10: 459, 1989.CrossRefGoogle Scholar
  553. Zaccheo, D., Zicca, A., Cadoni, A., Leprini, A., Castellucci, M., and Kaufmann, P.: Preliminary observations on Hofbauer cells in short-term culture and. Bibl. Anat. 22: 63–68, 1982.PubMedGoogle Scholar
  554. Zaccheo, D., Pistoia, V., Castellucci, M., and Martinoli, C.: Isolation and characterization of Hofbauer cells from human placental villi. Arch. Gynecol. 246: 189–200, 1989.CrossRefGoogle Scholar
  555. Zacks, S., and Blazar, A.S.: Chorionic villi in normal pregnancy, pre-eclamptic toxemia, erythroblastosis, and diabetes mellitus: a light-and electron-microscope study. Obstet. Gynecol. 22: 149–167, 1963.PubMedGoogle Scholar
  556. Ziegler-Heitbrock, H.-W.L.: The biology of the monocyte system. Eur. J. Cell Biol. 49: 1–12, 1989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Castellucci
    • 1
  • P. Kaufmann
  1. 1.Facolta Medicina e ChirurgiaIstituto Morfologia Umana NormaleAnconaItaly

Personalised recommendations