Advertisement

Anatomy and Pathology of the Placental Membranes

  • Kurt Benirschke
  • Peter Kaufmann

Abstract

The term membranes is usually taken to be synonymous with the amnion and the chorion laeve. The membranes represent the “bag of waters” that encloses the fetus. They are distinct from the chorion frondosum, which is the actual placental tissue and forms a specialized, thickened part of the membranes. The membranes normally insert at the edge of the placenta and contain the amnionic fluid and the fetus. Membranes rupture during delivery owing to stretching or the mechanical force of the accoucheur. Several distinct layers are present in the membranes, and the structure and function of the membranes have received considerable attention primarily because of an interest in the turnover of the water they contain. Enzymatic activity of the membranes during the initiation of labor has been of additional interest. Most recently, the composition of the various extracellular connective tissue components has come under scrutiny. Comprehensive surveys of many of these aspects, particularly the structural nature of the membranes, are found in Bourne’s (1962) and Schmidt’s (1992) books on the topic. Amnionic fluid mechanics are reviewed comprehensively by Barnes and Seeds (1972).

Keywords

Fetal Membrane Amniotic Fluid Embolism Human Amnion Meconium Aspiration Syndrome Placental Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, D.R., and Gray, E.S.: Physiologic fetal defecation in midpregnancy. Obstet. Gynecol. 60:294–296, 1982.Google Scholar
  2. Abu-Yousef, M.M., Bleicher, J.J., Williamson, Weiner, C.P.: Subchorionic hemorrhage: sonographic diagnosis and clinical significance. Am. J. Roentgenol. 149: 737–740, 1987.Google Scholar
  3. Akle, C.A., Adinolfi, M., Welsh, K.I., Leibowitz, S., and McColl, I Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2: 1003 1005, 1981.Google Scholar
  4. Alger, L.S., Kisner, H.J., and Nagey, D.A.: The presence of a meconium-like substance in second-trimester amniotic fluid. Am. J. Obstet. Gynecol. 150: 380–385, 1984.PubMedGoogle Scholar
  5. Allen, R.: The significance of meconium in midtrimester genetic amniocentesis. Am. J. Obstet. Gynecol. 152: 413417, 1985.Google Scholar
  6. Altshuler, G., and Hyde, S.: Meconium induced vasoconstriction: a potential cause of cerebral and other fetal hypo-perfusion and of poor pregnancy outcome. J. Child Neurol. 4: 137–142, 1989.PubMedCrossRefGoogle Scholar
  7. Altshuler, G., and McAdams, A.J.: The role of the placenta in fetal and perinatal pathology. Am. J. Obstet. Gynecol. 113: 616–626, 1972.PubMedGoogle Scholar
  8. Altshuler, G., Arizawa, M., and Molnar-Nadasdy, G.: Meconium-induced umbilical cord vascular necrosis and ulceration: a potential link between the placenta and poor pregnancy outcome. Obstet. Gynecol. 79: 760–766, 1992.PubMedGoogle Scholar
  9. Al-Zaid, N.S., Bou-Resli, M.N., and Goldspink, G.: Bursting pressure and collagen content of fetal membranes. Br. J. Obstet. Gynaecol. 87: 227–229, 1980.PubMedCrossRefGoogle Scholar
  10. Anderson, H.C., Merker, P.C., and Fogh, J.: Formation of tumors containing bone after intramuscular injection of transformed human amnion cells (FL) into cortisone treated mice. Am. J. Pathol. 44: 507–519, 1964.PubMedGoogle Scholar
  11. Aplin, J.D., and Allen, T.D.: The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J. Cell Sci. 79: 119–136, 1985.PubMedGoogle Scholar
  12. Aplin, J.D., and Campbell, S.: An immunofluorescence study of extracellular matrix associated with cytotrophoblast of the chorion laeve. Placenta 6: 469–479, 1985.PubMedCrossRefGoogle Scholar
  13. Aplin, J.D., Campbell, S., Donnai, P., Bard, J.B.L., and Allen, T.D.: Importance of vitamin C in maintenance of the normal amnion: an experimental study. Placenta 7: 377389, 1986.Google Scholar
  14. Ariel, I.B., and Landing, B.H.: A possible distinctive vacuolar change of the amniotic epithelium associated with gastroschisis. Pediatr. Pathol. 2: 283–289, 1985.CrossRefGoogle Scholar
  15. Armstrong, W.D., Wilt, J.C., and Pritchard, E.T.: Vacuolation in the human amnion cell studied by time-lapse photography and electron microscopy. Am. J. Obstet. Gynecol. 102: 932–948, 1968.PubMedGoogle Scholar
  16. Artal, R., Sokol, R.J., Neuman, M., Burstein, A.H., and Stojkov, J.: The mechanical properties of prematurely and non-prematurely ruptured membranes: methods and preliminary results. Am. J. Obstet. Gynecol. 125: 655–659, 1976.PubMedGoogle Scholar
  17. Artal, R., Burgeson, R.E., Hobel, C.J., and Hollister, D.: An in vitro model for the study of enzymatically mediated biomechanical changes in the chorioamniotic membranes. Am. J. Obstet. Gynecol. 133: 656–659, 1979.PubMedGoogle Scholar
  18. Arts, N.F.T.: Investigations on the vascular system of the placenta. II. The maternal vascular system. Am. J. Obstet. Gynecol. 82: 159–166, 1961.PubMedGoogle Scholar
  19. Ashkenazy, M., Borenstein, R., Katz, Z., and Segal, M.: Constriction of the umbilical cord by an amniotic band after midtrimester amniocentesis. Acta Obstet. Gynecol. Scand. 61: 89–91, 1982.CrossRefGoogle Scholar
  20. Atalla, A., and Page, I.: Ehlers-Danlos syndrome type III in pregnancy. Obstet. Gynecol. 71: 508–509, 1988.PubMedGoogle Scholar
  21. Azegami, M., and Mori, N.: Amniotic fluid embolism and leukotrienes. Am. J. Obstet. Gynecol. 155: 1119–1124, 1986.PubMedGoogle Scholar
  22. Bain, A.D., Smith, I.I., and Gauld, I.K.: Newborn after prolonged leakage of liquor amnii. B.M.J. 2: 598–599, 1964.CrossRefGoogle Scholar
  23. Baker, C.J., and Rudolph, A.J.: Congenital ring constriction and intrauterine amputations. Am. J. Dis. Child. 121: 393400, 1971.Google Scholar
  24. Ballantyne, J.W.: Manual of Antenatal Pathology and Hygiene. The Embryo. William Greene and Sons, Edinburgh, 1904.Google Scholar
  25. Barabas, A.P.: Ehlers-Danlos syndrome: associated with prematurity and premature rupture of foetal membranes; possible increase in incidence. B.M.J. 2: 682–684, 1966.CrossRefGoogle Scholar
  26. Barnes, A.C., and Seeds, A.E.: The Water Metabolism of the Fetus. Charles C Thomas, Springfield, IL, 1972.Google Scholar
  27. Barss, V.A., Benacerraf, B.R., and Frigoletto, F.D.: Second trimester oligohydramnios, a predictor of poor fetal outcome. Obstet. Gynecol. 64: 608–610, 1984.PubMedGoogle Scholar
  28. Bartels, H., and Wang, T.: Intercellular junctions in the human fetal membranes. Anat. Embryol. (Berl.) 166: 103120, 1983.Google Scholar
  29. Bartman, J., and Blanc, W.A.: Ultrastructure of human fetal placental membranes in chorio-amnionitis and meconium exposure. Obstet. Gynecol. 35: 554–561, 1970.PubMedGoogle Scholar
  30. Bartman, J., and Driscoll, S.G.: Amnion nodosum and hypo-plastic cystic kidneys: an electron microscopic and microdissection study. Obstet. Gynecol. 32: 700–705, 1968.PubMedGoogle Scholar
  31. Battaglia, F.C., Hellegers, A.E., Meschia, G., and Barron, D.H.: In vitro investigations of the human chorion as a membrane system. Nature 196: 1061–1063, 1962.PubMedCrossRefGoogle Scholar
  32. Battaglia, F.C., Behrman, R.E., Meschia, G., Seeds, A.E., and Bruns, P.D.: Clearance of inert molecules, Na, and Cl ions across the primate placenta. Am. J. Obstet. Gynecol. 102: 1135–1143, 1968.PubMedGoogle Scholar
  33. Bautzmann, H.: Fruchthüllenmotorik und Embryokinese: Ihre Natur und ihre Bedeutung für eine physiologische Embryonalentwicklung bei Tier und Mensch. Arch. Gynecol. 187: 519–545, 1956.Google Scholar
  34. Bautzmann, H., and Hertenstein, C.: Zur Histogenese und Histologie des menschlichen fetalen und Neugeborenen-Amnion Z Zellforsch. 45: 589–611, 1957.Google Scholar
  35. Bautzmann, H., and Schröder, R.: Studien zur funktionellen Histologie und Histogenese des Amnions beim Hühnchen und beim Menschen. Z. Anat. Entwicklungsgesch. 117: 166–214, 1953.PubMedCrossRefGoogle Scholar
  36. Bautzmann, H., and Schröder, R.: Vergleichende Studien über Bau und Funktion des Amnions: neue Befunde am menschlichen Amnion mit Einschluß seiner freien Bindegewebs-oder sog. Hofbauerzellen. Z. Anat. 119: 722, 1955.Google Scholar
  37. Bautzmann, H., Schmidt, W., and Lemburg, P.: Experimental electron- and light-microscopic studies on the function ofGoogle Scholar
  38. the amnion-apparatus of the chick, the cat and man. Anat. Anz. 108: 305–310, 1960.Google Scholar
  39. Baxi, L.V., and Pearlstone, M.M.: Subchorionic hematomas and the presence of autoantibodies. Am. J. Obstet. Gynecol. 165: 1423–1424, 1991.PubMedGoogle Scholar
  40. Bedin, M., Weil, D., Fournier, T., Cedard, L., and Frezal, J.: Biochemical evidence for non-inactivation of the steroid sulfatase locus in human placenta and fibroblasts. Hum. Genet. 59: 256–258, 1981.PubMedCrossRefGoogle Scholar
  41. Beham, A., Denk, H., and Desoye, G.: The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9: 479–492, 1988.PubMedCrossRefGoogle Scholar
  42. Beller, F.K., Douglas, G.W., Debrovner, C.H., and Robinson, R.: The fibrinolytic system in amniotic fluid embolism. Am. J. Obstet. Gynecol. 87: 48–55, 1963.Google Scholar
  43. Bendon, R.W., and Ray, M.B.: The pathologic findings of the fetal membranes in very prolonged amniotic fluid leakage. Arch. Pathol. Lab. Med. 110: 47–50, 1986.PubMedGoogle Scholar
  44. Benedetti, W.L., Sala, M.A., and Alvarez, H.: Histochemical demonstration of enzymes in the umbilical cord and membranes of human term pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 3: 185–189, 1973.CrossRefGoogle Scholar
  45. Benedetto, M.T., de Cicco, F., Rossielli, F., Nicosia, A.L., Lupi, G., and Dell’Acqua, S.: Oxytocin receptor in human fetal membranes at term and during labor. J. Steroid Biochem. 35: 205–208, 1990.PubMedCrossRefGoogle Scholar
  46. Benirschke, K.: Effects of placental pathology on the embryo and the fetus. In, Handbook of Teratology. Vol. 3. J.G. Wilson and F.C. Fraser, eds., pp. 79–115. Plenum Press, New York, 1977.Google Scholar
  47. Benirschke, K.: Placenta pathology: questions to the perinatologist. J. Perinatol. (in press, 1994).Google Scholar
  48. Bernstein, I.M., Barth, R.A., Miller, R., and Capeless, E.L.: Elevated maternal serum alpha-fetoprotein: association with placental sonolucencies, fetomaternal hemorrhage, vaginal bleeding, and pregnancy outcome in the absence of fetal anomalies. Obstet. Gynecol. 79: 71–74, 1992.PubMedGoogle Scholar
  49. Bieber, F.R., Mostoufi-Zadeh, M., Birnholz, J.C., and Driscoll S.G.: Amniotic band sequence associated with ectopia cordis in one twin. J. Pediatr. 105: 817–819, 1984.PubMedCrossRefGoogle Scholar
  50. Blanc, W.A.: Vernix granulomatosis of amnion (“amnion nodosum”) in oligohydramnios: lesion associated with urinary anomalies, retention of dead fetuses, and prolonged leakage of amniotic fluid. N.Y. J. Med. 61: 1492–1496, 1961.Google Scholar
  51. Blanc, W.A., Apperson, J.W., and McNally, J.: Pathology of the newborn and of the placenta in oligohydramnios. Bull. Sloane Hosp. Women 7: 51–64, 1962.Google Scholar
  52. Blanc, W.A., Mattison, D.R., Kane, R., and Chauhan, P.: L.S.D., intrauterine amputations, and amniotic-band syndrome. Lancet 2: 158–159, 1971.PubMedCrossRefGoogle Scholar
  53. Bohle, A., and Hienz, H.A.: Zellkernmorphologische Geschlechtsbestimmung an der Placenta. Klin. Wochenschr. 34: 981–985, 1956.PubMedCrossRefGoogle Scholar
  54. Boll, H.U., Forssmann, W.G., and Taugner, R.: Studies on the juxtaglomerular apparatus. IV. Freeze-fracturing of membrane surfaces. Cell Tissue Res. 161: 459–469, 1975.PubMedCrossRefGoogle Scholar
  55. Borlum, K.-G.: Second-trimester chorioamniotic separation and amniocentesis. Eur. J. Obstet. Gynecol. Reprod. Biol. 30: 35–38, 1989.PubMedCrossRefGoogle Scholar
  56. Boué, A., Muller, F., Briard, M.L., and Boué, J.: Interest of biology in the management of pregnancies where a fetal malformation has been detected by ultrasonography. Fetal Ther. 3: 14–23, 1988.PubMedCrossRefGoogle Scholar
  57. Bou-Resli, M.N., Al-Zaid, N.S., and Ibrahim, M.E.A.: Full-term and prematurely ruptured fetal membranes. Cell Tissue Res. 220: 263–278, 1981.PubMedCrossRefGoogle Scholar
  58. Boume, G.L.: The microscopic anatomy of the human amnionGoogle Scholar
  59. and chorion. Am. J. Obstet. Gynecol. 79:1070–1073, 1960. Boume, G.L.: The Human Amnion and Chorion. Lloyd-Google Scholar
  60. Luke, London, 1962.Google Scholar
  61. Boume, G.L., and Lacy, D.: Ultra-structure of human amnion and its possible relation to the circulation of amniotic fluid. Nature 168: 952–954, 1960.Google Scholar
  62. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heffer and Sons, Cambridge, 1970.Google Scholar
  63. Breed, A., Mantingh, A., Govaerts, L., Booger, A., Anders, G., and Laurini, R.: Abnormal karyotype in the chorion, not confirmed in a subsequently aborted fetus. Prenat. Diagn. 6: 375–377, 1986.PubMedCrossRefGoogle Scholar
  64. Brown, D.R., Doshi, N., and Taylor, P.M.: Oligohydramnios and fatal pulmonary hypoplasia without amnion nodosum. J. Reprod. Med. 20: 293–296, 1978.PubMedGoogle Scholar
  65. Brusis, E., Nitsch, B., and Wengeler, H.: Fruchtwasser und Amnion In, Klinik der Frauenheilkunde und Geburtshilfe. Vol. 4. G. Döderlein and K.H. Wulf, eds., pp. 667–750. Urban and Schwarzenberg, Munich, 1975.Google Scholar
  66. Bryant-Greenwood, G.D., Rees, M.C.P., and Turnbull, A.C. Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J. Endocrinol. 114: 491–496, 1987.PubMedCrossRefGoogle Scholar
  67. Bühler, F.R.: Randbildungen der menschlichen Placenta. Acta Anat. (Basel) 59: 47–76, 1964.Google Scholar
  68. Bullen, B., Bloxam, D., Ryder, T.A., Mobberley, M.A., and Bax, C.M.: Two-sided culture of human placental trophoblast: morphology, immunohistochemistry and permeability properties. Placenta 11: 431–450, 1990.PubMedCrossRefGoogle Scholar
  69. Burgess, A.M., and Hutchins, G.M.: Inflammation of the lungs, umbilical cord, and placenta associated with meconium passage in utero: review of 123 autopsied cases [abstract 4]. Mod. Pathol. 7 (1): 1P, 1994.Google Scholar
  70. Butler, W.J., Schwartz, C.E., Sauer, S.M., Wilson, J.T., and McDonough, P.G.: Discordance in deoxyribonucleic acid analysis of fetus and trophoblast. Am. J. Obstet. Gynecol. 158: 642–645, 1988.PubMedGoogle Scholar
  71. Byrne, D.L., and Gau, G.: In utero meconium aspiration: an unpreventable cause of neonatal death. Br. J. Obstet. Gynaecol. 94: 813–814, 1987.PubMedCrossRefGoogle Scholar
  72. Campbell, S., Allen, T.D., Moser, B.B., and Aplin, J.D.: The translaminal fibrils of the human amnion basement membrane. J. Cell Sci. 94: 307–318, 1989.PubMedGoogle Scholar
  73. Cane, F.E.: The functions of the amnion. Lancet 2: 1274, 1888.CrossRefGoogle Scholar
  74. Casey, M.L., Delgadillo, M., Cox, K.A., Niesert, S., and MacDonald, P.C.: Inactivation of prostaglandins in human decidua vera (parietalis) tissue: substrate specificity of prostaglandin dehydrogenase. Am. J. Obstet. Gynecol. 160: 3–7, 1989.PubMedGoogle Scholar
  75. Casey, M.L., Word, R.A., and MacDonald, P.C.: Endothelin1 gene expression and regulation of endothelin mRNA andGoogle Scholar
  76. protein biosynthesis in avascular human amnion. J. Biol. Chem. 266: 5762–5768, 1991.Google Scholar
  77. Charpin, C., Kopp, F., Pourreau-Schneider, N., Lissitzky, J.C., Lavaut, M.N., Martin, P.M., and Toga, M.: Laminin distribution in human decidua and immature placenta: an immunoelectronmicroscopic study (avidin-biotin-peroxidase complex method). Am. J. Obstet. Gynecol. 151: 822–826, 1985.PubMedGoogle Scholar
  78. Chaurasia, B.D.: Amniochorionic bands and adhesions with fetal deformities. Anat. Anz. 144: 158–162, 1978.PubMedGoogle Scholar
  79. Cheung, P.Y., Walton, J.C., Tai, H.H., Riley, S.C., and Challis, J.R.: Immunocytochemical distribution and localization of 15-hydroxyprostaglandin dehydrogenase in human fetal membranes, decidua, and placenta. Am. J. Obstet. Gynecol. 163: 1445–1449, 1990.PubMedGoogle Scholar
  80. Chez, R.A., Josimovich, J.B., and Schultz, S.G.: The transfer of human placental lactogen across isolated amnion-chorion. Gynecol. Invest. 1: 312–318, 1970.CrossRefGoogle Scholar
  81. Christiaens, G.C.M.L., van Baarlen, J., Huber, J., and Leschot, N.J.: Fetal limb constriction: a possible complication of CVS. Prenat. Diagn. 9: 67–71, 1989.PubMedCrossRefGoogle Scholar
  82. Clark, S.L.: Arachidic acid metabolites and the pathophysiology of amniotic fluid embolism. Semin. Reprod. Endocrinol. 3: 253–257, 1985.CrossRefGoogle Scholar
  83. Clark, S.L.: Amniotic fluid embolism and leukotrienes. Am. J. Obstet. Gynecol. 158: 681, 1988.PubMedGoogle Scholar
  84. Clark, S.L., Pavlova, Z., Greenspoon, J., Horenstein, J., and Phelan, J.P.: Squamous cells in the maternal pulmonary circulation. Am. J. Obstet. Gynecol. 154: 104–106, 1986.PubMedGoogle Scholar
  85. Clark, S.L., Cotton, D.B., Gonik, B., Greenspoon, J., and Phelan, J.P.: Central hemodynamic alterations in amniotic fluid embolism. Am. J. Obstet. Gynecol. 158: 1124–1126, 1988.PubMedGoogle Scholar
  86. Clayton, E.M., Waller, D.H., and Foster, E.B.: The significance of heme pigments in amniotic fluid. Obstet. Gynecol. 34: 641–647, 1969.PubMedGoogle Scholar
  87. Clement, D., Schifrin, B.S., and Kates, R.B.: Acute oligohydramnios in postdate pregnancy. Am. J. Obstet. Gynecol. 157: 884–886, 1987.PubMedGoogle Scholar
  88. Cooperberg, P.L., Wright, V.J., and Carpenter, C.W.: Ultrasonographic demonstration of a placental maternal lake. J. Clin. Ultrasound 7: 62–64, 1979.PubMedCrossRefGoogle Scholar
  89. Corridan, M., Kendall, E.D., and Begg, J.D.: Cord entanglement causing premature placental separation and amniotic fluid embolism: case report. Br. J. Obstet. Gynaecol. 87: 935–940, 1980.PubMedCrossRefGoogle Scholar
  90. Coston, H.R.: Report of a case of ichthyosis fetalis; placenta and membranes involved. Am. J. Obstet. Dis. Women Child. 58: 650–654, 1908.Google Scholar
  91. Crane, J.P., and Cheung, S.W.: An embryonic model to explain cytogenetic inconsistencies observed in chorionic villus versus fetal tissue. Prenat. Diagn. 8: 119–129, 1988.PubMedCrossRefGoogle Scholar
  92. Crescimanno, C., Mühlhauser, J., Castellucci, M., Rajaniemi, H., Parkkila, S., and Kaufmann, P.: Immunocytochemical expression patterns of carbonic anhydrase isoenzymes in human placenta, cord and membranes. Placenta 14: A11, 1993.CrossRefGoogle Scholar
  93. Danforth, D.N., and Hull, R.W.: The microscopic anatomy of the fetal membranes with particular reference to theGoogle Scholar
  94. detailed structure of the amnion. Am. J. Obstet. Gynecol. 75: 536–550, 1958.Google Scholar
  95. Danforth, D.N., Elin, T.W., and Stanes, M.N.: Studies on fetal membranes. I. Bursting tension. Am. J. Obstet. Gynecol. 65: 480–490, 1953.Google Scholar
  96. Davis, J.R., and Penny, R.J.: Improved fluorescence method for identifying sex chromatin in formalin-fixed tissue. Am. J. Clin. Pathol. 75: 731–733, 1981.PubMedGoogle Scholar
  97. Davis, R.O., Philips, J.B., III, Harris, B.A., Wilson, E.R., and Huddleston, J.F.: Fatal meconium aspiration syndrome occurring despite airway management considered appropriate. Am. J. Obstet. Gynecol. 151: 731–736, 1985.PubMedGoogle Scholar
  98. Davis, G.E., Blaker, S.N., Engvall, E., Varon, S., Manthorpe, M., and Gage, F.H.: Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science 236: 1106–1109, 1987.PubMedCrossRefGoogle Scholar
  99. Déglon, P.: Lésions placentaires et foetales dans 100 cas d’oligohydramnios. Thesis, University of Lausanne, 1978. De Ikonicoff, L.K., and Cedard, L.: Localization of human chorionic gonadotropic and somatomammotropic hormones by the peroxidase immuno-enzymologic method in villi and amniotic epithelium of human placenta (from six weeks to term). Am. J. Obstet. Gynecol. 116: 1124–1132, 1973.Google Scholar
  100. DeMyer, W., and Baird, I.: Mortality and skeletal malformations from amniocentesis and oligohydramnios in rats: cleft palate, clubfoot, microstomia, and adactyly. Teratology 2: 33–38, 1969.PubMedCrossRefGoogle Scholar
  101. DeSa, D.J.: Rupture of fetal vessels on placental surface. Arch. Dis. Child. 46: 495–501, 1971.PubMedCrossRefGoogle Scholar
  102. Desmond, M.M., Lindley, J.E., Moore, J., and Brown, C.A.: Meconium staining of newborn infants. J. Pediatr. 49: 540549, 1956.Google Scholar
  103. Dickey, R.P., Olar, T.T., Curole, D.N., Taylor, S.N., and Matulich, E.M.: Relationship of first-trimester subchorionic bleeding detected by color Doppler ultrasound to subchorionic fluid, clinical bleeding, and pregnancy outcome. Obstet. Gynecol. 80: 415–420, 1992.PubMedGoogle Scholar
  104. Dominguez, R., Segal, A.J., and O’Sullivan, J.A.: Leukocytic infiltration of the umbilical cord: manifestation of fetal hypoxia due to reduction of blood flow in the cord. J.A.M.A. 173: 346–349, 1960.CrossRefGoogle Scholar
  105. Donskikh, N.V.: New views on vascularity of the human amnion. Akush. Ginekol. (Mosk.) 33:93–94, 1957 (Russian).Google Scholar
  106. Dooley, S.L., Pesavento, D.J., Depp, R., Socol, M.L., Tamura, R.K., and Wiringa, K.S.: Meconium below the vocal cords at delivery: correlation with intrapartum events. Am. J. Obstet. Gynecol. 153: 767–770, 1985.PubMedGoogle Scholar
  107. Editorial: Anyone for amnion ? Lancet 1: 719, 1984.Google Scholar
  108. Ellis, S.A., Sargent, I.L., Redman, C.W., and McMichael, A.J.: Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 59: 595–601, 1986.PubMedGoogle Scholar
  109. Enders, A.C., and King, B.F.: Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am. J. Anat. 181: 327–340, 1988.PubMedCrossRefGoogle Scholar
  110. Evaldson, G.R., Larsson, B., and Jiborn, H.: Is collagen content reduced when the fetal membranes rupture? A clinical study of term and prematurely ruptured membranes. Gynecol. Obstet. Invest. 24: 92–94, 1987.PubMedCrossRefGoogle Scholar
  111. Falciglia, H.S.: Failure to prevent meconium aspiration syndrome. Obstet. Gynecol. 71: 349–353, 1988.PubMedGoogle Scholar
  112. Falciglia, H.S., Kosmetatos, N., Brady, K., and Wesseler, T.A.: Intrauterine meconium aspiration in an extremely premature infant. Am. J. Dis. Child. 147: 1035–1037, 1993.PubMedGoogle Scholar
  113. Faulk, W.P., Hsi, B.-L., Yeh, C.-J.G., McIntyre, J.A., and Stevens, P.J.: Epidermolysis bullosa fetalis: an immunogenetic disease of extraembryonic exoderm ? Am. J. Obstet. Gynecol. 158: 150–157, 1988.PubMedGoogle Scholar
  114. Fitch, N., and Lachance, R.C.: The pathogenesis of Potter’s syndrome of renal agenesis. Can. Med. Assoc. J. 107: 653656, 1972.Google Scholar
  115. Fleischer, A.C., Kurtz, A.B., Wapnyr, R.J., Ruch, D., Sacks, G.A., Jeanty, P., Shah, D.M., and-Boehm, F.H.: Elevated alpha-fetoprotein and a normal fetal sonogram: association with placental abnormalities. Am. J. Roentgenol. 150: 881–883, 1988.Google Scholar
  116. Foltz, C.M., Russo, R.G., Terranova, V.P., and Liotta, L.A.: Interactions of tumous cells with whole basement membrane in the presence or absence of endothelium. In, Interaction of Platelets and Tumour Cells. G.A. Jamieson and A.R. Scipio, eds., pp. 353–371. Alan R. Liss, New York, 1982.Google Scholar
  117. Forssmann, W.G., and Taugner, R.: Studies on the juxtaglomerular apparatus. V. The juxtaglomerular apparatus in Tupaia with special reference to intercellular contacts. Cell Tissue Res. 177: 291–305, 1977.PubMedGoogle Scholar
  118. Fort, A.T.: Prenatal intrusion into the amnion. Am. J. Obstet. Gynecol. 110: 432–455, 1971.PubMedGoogle Scholar
  119. Foster, H.W., and Das, S.K.: Study of lipids in human amnion and chorion. Am. J. Obstet. Gynecol. 149: 670673, 1984.Google Scholar
  120. Fox, H., and Butler-Manuel, R.: A teratoma of the placenta. J. Pathol. Bacteriol. 88: 137–140, 1964.PubMedCrossRefGoogle Scholar
  121. Frank, H.G., Malekzadeh, F., Kertschanska, S., Crescimanno, C., Castellucci, M., Lang, I., Desoye, G., and Kaufmann, P • Immunohistochemistry of two different types of placental fibrinoid. Acta Anat. 150: 55–68, 1994.PubMedCrossRefGoogle Scholar
  122. Franqoual, J., Lindenbaum, A., Benattar, C., Dehan, M., Cohen, H., and Leluc, R.: Importance of simultaneous determination of coproporphyrin and hemoglobin in contaminated amniotic fluid. Clin. Chem. 32: 877–878, 1986.Google Scholar
  123. Franqué, O.v.: Zur Kenntnis der Amnionanomalien. Monatsschr. Geburtshilfe Gynäkol. 6: 36–41, 1897.Google Scholar
  124. Frels, W.I., Rossant, J., and Chapman, V.M.: Maternal X chromosome expression in mouse chorionic ectoderm. Dev. Genet. 1: 123–132, 1979.CrossRefGoogle Scholar
  125. Fuchs, A.R., Periysamy, S., Alexandrova, M., and Soloff, M.: Correlation between oxytocin receptor concentration and responsiveness to oxytocin in pregnant myometrium: effects of ovarian steroids. Endocrinology 113: 742–749, 1983.PubMedCrossRefGoogle Scholar
  126. Fujikura, T., and Klionsky, B.: The significance of meconium staining. Am. J. Obstet. Gynecol. 121: 45–50, 1975.PubMedGoogle Scholar
  127. Garcia, A.G.P., Consorte, S.M., Lana, A.M.A., and Friede, R.: Amnion nodosum and congenital ichthyosis. Am. J. Clin. Pathol. 67: 567–572, 1977.PubMedGoogle Scholar
  128. Garza, A., Cordero, J.F., and Mulinare, J.: Epidemiology of the early amnion rupture spectrum of defects. Am. J. Dis. Child. 142: 541–544, 1988.PubMedGoogle Scholar
  129. Gibb, W., and Lavoie, J.C.: Effects of glucocorticoids on prostaglandin formation by human amnion. Can. J. Physiol. Pharmacol. 68: 671–676, 1990.PubMedCrossRefGoogle Scholar
  130. Goetzman, B.W.: Meconium aspiration. Am. J. Dis. Child. 146: 1282–1283, 1992.PubMedGoogle Scholar
  131. Golbus, M.S., and Stephens, J.D.: Prenatal diagnosis, chromosomal abnormalities and neural tube defects. Clin. Perinatol. 6: 245–254, 1979.PubMedGoogle Scholar
  132. Goodlin, R.C.: Meconium aspiration. Obstet. Gynecol. 32: 94–95, 1968.PubMedGoogle Scholar
  133. Gossrau, R., Graf, R., Ruhnke, M., and Hanski, C.: Pro-teases in the human full-term placenta. Histochemistry. 86: 405–413, 1987.PubMedCrossRefGoogle Scholar
  134. Grafe, M.J., and Benirschke, K.: Ultrastructural study of the amniotic epithelium in a case of gastroschisis. Pediatr. Pathol. 10: 95–101, 1990.PubMedCrossRefGoogle Scholar
  135. Griffiths, D.M., and Burge, D.M.: When is meconium stained liquor actually bile stained vomitus? Arch. Dis. Child. 63: 201–202, 1988.CrossRefGoogle Scholar
  136. Grimes, L.D., and Cassady, G.: Fetal gastrointestinal obstruc-Google Scholar
  137. tion. Am. J. Obstet. Gynecol. 106:1196–1200, 1970. Grosser, O.: Frühentwicklung, Eihautbildung and Placenta-Google Scholar
  138. tion des Menschen and der Säugetiere. J.F. BergmannGoogle Scholar
  139. Munich, 1927.Google Scholar
  140. Guidotti, R.J., Grimes, D.A., and Cates, W.: Fatal amniotic fluid embolism during legally induced abortion, United States, 1972 to 1978. Am. J. Obstet. Gynecol. 141: 257–261, 1981.PubMedGoogle Scholar
  141. Haddad, F.S.: Amniotic fluid embolism: a review of the literature and a case report with recovery. J. Indian Med. Assoc. 17: 76–79, 1985.Google Scholar
  142. Hamilton, W.J., and Boyd, J.D.: Development of the human placenta in the first three months of gestation. J. Anat. 94: 297–328, 1960.PubMedGoogle Scholar
  143. Hankins, G.D.V., Rowe, J., Quirk, J.G., Trubey, R., and Strickland, D.M.: Significance of brown and/or green amniotic fluid at the time of second trimester genetic amniocentesis. Obstet. Gynecol. 64: 353–358, 1984.PubMedGoogle Scholar
  144. Harrison, K.B., and Warburton, D.: Preferential X-chromosome activity in human female placental tissue. Cytogenet. Cell Genet. 41: 163–168, 1986.PubMedCrossRefGoogle Scholar
  145. Hartwig, N.G., Vermej-Keers, C.H.R., de Vries, H.E., Kagie, M., and Kragt, H.: Limb body wall malformation complex: an embryologic etiology? Hum. Pathol. 20: 1071 1077, 1989.Google Scholar
  146. Hebertson, R.M., Hammond, M.E., and Bryson, M.J.: Amniotic epithelial ultrastructure in normal, polyhydramnic, and oligohydramnic pregnancies. Obstet. Gynecol. 68: 7479, 1986.Google Scholar
  147. Hempel, E.: Die ultrastrukturelle Differenzierung des menschlichen Amnionepithels unter besonderer Berücksichtigung des Nabelstranges. Anat. Anz. 132: 356370, 1972.Google Scholar
  148. Herendael, B.J.v., Oberti, C., and Brosens, I.: Microanatomy of the human amniotic membranes: a light microscopic, transmission, and scanning electron microscopic study. Am. J. Obstet. Gynecol. 131: 872–880, 1978.PubMedGoogle Scholar
  149. Hertig, A.T.: On the development of the amnion and exocoelomic membrane in the previllous human ovum. Yale J. Biol. Med. 18: 107–115, 1945.Google Scholar
  150. Hertig, A.T.: Human Trophoblast. Charles C Thomas. Springfield, IL, 1968.Google Scholar
  151. Hertig, A.T., and Rock, J.: Two human ova of the previllous stage having an ovulation age of about eleven and twelve days respectively. Contrib. Embryol. Carnegie Inst. 29: 127–156, 1941.Google Scholar
  152. Hessle, H., and Engvall, E.: Type VI collagen. J. Biol. Chem. 259: 3955–3961, 1984.PubMedGoogle Scholar
  153. Hessle, H., Sakai, L.Y., Hollister, D.W., Burgeson, R.E., and Engvall, E.: Basement membrane diversity detected by monoclonal antibodies. Differentiation 26: 49–54, 1984.PubMedCrossRefGoogle Scholar
  154. Higginbottom, M.C., Jones, K.L., Hall, B.D., and Smith, D.W.: The amniotic band disruption complex: timing of amnion rupture and variable spectra of consequent defects. J. Pediatr. 95: 544–549, 1979.PubMedCrossRefGoogle Scholar
  155. Hills, B.A.: Further studies of the role of surfactant in premature rupture of the membranes. Am. J. Obstet. Gynecol. 170: 195–201, 1994.PubMedGoogle Scholar
  156. Hinrichsen, K.: Embryogenese, äußere Körperform und Nabelbildung. In, Humanembryologie. K. Hinrichsen, ed. Springer, Heidelberg, 1990.Google Scholar
  157. Hofbauer, J.: Extrachoriale Fruchtentwicklung, in situ beobachtet. Arch. Gynecol. 135: 332–333, 1929.Google Scholar
  158. Hogge, W.A., Schonberg, S.A., and Golbus, M.S.: Prenatal diagnosis by chorionic villus sampling: lessons of the first 600 cases. Prenat. Diagn. 5: 393–400, 1985.PubMedCrossRefGoogle Scholar
  159. Hong, C.Y., and Simon, M A • Amniotic bands knotted about umbilical cord: a rare cause of fetal death. Obstet. Gynecol. 22: 667–670, 1963.PubMedGoogle Scholar
  160. Houben, J.J., and Huygens, R.: Subcellular effects of experimental oligohydramnios on the developing rat limb. Teratology 36: 107–116, 1987.PubMedCrossRefGoogle Scholar
  161. Hoyes, A.D.: Fine structure of human amniotic epithelium in early pregnancy. J. Obstet. Gynaecol. Br. Commonw. 75: 949–962, 1968a.PubMedCrossRefGoogle Scholar
  162. Hoyes, A.D.: Ultrastructure of the epithelium of human umbilical cord. J. Anat. 103: 388–389, 1968b.Google Scholar
  163. Hoyes, A.D.: Ultrastructure of the human mesenchymal layers of the human chorion in early pregnancy. Am. J. Obstet. Gynecol. 106: 557–566, 1970.PubMedGoogle Scholar
  164. Hoyes, A.D.: Ultrastructure of the mesenchymal layers of the human chorion laeve. J. Anat. 109: 17–30, 1971.PubMedGoogle Scholar
  165. Hoyes, A.D.: Fine structure of human amnionic epithelium following short term preservations in vitro. J. Anat. 111: 43–54, 1972.PubMedGoogle Scholar
  166. Hunt, J.S., and Fishback, J.L.: Amniochorion: immunologic aspects—a review. Am. J. Reprod. Immunol. 21: 114–118, 1989.PubMedGoogle Scholar
  167. Ibrahim, M.E.A., Bou-Resli, M.N., Al-Zaid, N.S., and Bishay, L.F.: Intact fetal membranes: morphological pre-disposal to rupture. Acta Obstet. Gynecol. Scand. 62: 481–485, 1983.CrossRefGoogle Scholar
  168. Itskovitz, J., Abramovici, H., and Brandes, J.M.: Oligohydramnion, meconium and perinatal death concurrent with indomethacin treatment in human pregnancy. J. Reprod. Med. 24: 137–140, 1980.PubMedGoogle Scholar
  169. Jenkins, D.M., O’Neill, M., Matter, M., France, V.W., Hsi, B.L., and Faulk, W.P.: Degenerative changes and detection of plasminogen in fetal membranes that rupture prematurely. Br. J. Obstet. Gynaecol. 90: 841–846, 1983.PubMedCrossRefGoogle Scholar
  170. Jonas, E.G., and Caunt, A.E.: Clinical evaluation of human amnion tissue culture. B.M.J. 1: 898–901, 1965.CrossRefGoogle Scholar
  171. Jones, S.A., and Challis, J.R. Local stimulation of prostaglandin production by corticotropin-releasing hormone in human fetal membranes and placenta. Biochem. Biophys. Res. Commun. 159: 192–199, 1989.Google Scholar
  172. Jones, S.A., Brooks, A.N., and Challis, J.R.: Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta. J. Clin. Endocrinol. Metab. 68: 825–830, 1989.PubMedCrossRefGoogle Scholar
  173. Joseph, T.J., and Vogt, P.J.: Placental teratomas. Obstet. Gynecol. 41: 574–578, 1973.PubMedGoogle Scholar
  174. Kallakury, B., Kelty, R., Ross, J.S., and Amyot, K.: Prevalence, histological characteristics and clinical significance of meconium in placentas [abstract 26]. Mod. Pathol. 6: 5P, 1993.Google Scholar
  175. Kalousek, D.: Amniotic band syndrome in previable fetuses. Pediatr. Pathol. 7: 488, 1987.Google Scholar
  176. Kalousek, D.K., and Bamforth, S.: Amnion rupture sequence in previable fetuses. Am. J. Med. Genet. 31: 63–73, 1988.PubMedCrossRefGoogle Scholar
  177. Kalousek, D.K., and Dill, F.J.: Chromosomal mosaicism confined to the placenta in human conceptions. Science 221: 665–667, 1983.PubMedCrossRefGoogle Scholar
  178. Kaltenbach, F.J., and Sachs, W.: The uptake of tritiated thymidine in human fetal membranes during the last third of pregnancy. Z. Geburtshilfe Perinatol. 183: 285–295, 1979.PubMedGoogle Scholar
  179. Kanayama, N., Terao, T., Kawashima, Y., Horiuchi, K., and Fujimoto, D.: Collagen types in normal and prematurely ruptured amniotic membranes. Am. J. Obstet. Gynecol. 153: 899–903, 1985.PubMedGoogle Scholar
  180. Kaplan, C.: Placental pathology in perinatal disease. In, Gynecology and Obstetrics. Vol. 3. J.J. Sciarra, ed., Chapter 106, pp. 1–21. Harper and Row, Hagerstown, MD, 1980.Google Scholar
  181. Kaplan, M.: Fetal breathing movements: an update for the pediatrician. Am. J. Dis. Child. 137: 177–181, 1983.PubMedGoogle Scholar
  182. Karimi-Nejad, M.H., Khajavi, H., Gharavi, M.J., and KarimiNejad, R.: Neu-Laxova syndrome: report of a case and comments. Am. J. Med. Genet. 28: 17–23, 1987.PubMedCrossRefGoogle Scholar
  183. Karp, L.E., and Schiller, H.S.: Meconium staining of amniotic fluid at midtrimester amniocentesis. Obstet. Gynecol. 50: 47s - 49s, 1977.PubMedGoogle Scholar
  184. Katz, V.L., and Bowes, W.A.: Meconium aspiration syndrome: reflections on a murky subject. Am. J. Obstet. Gynecol. 166: 171–183, 1992.PubMedGoogle Scholar
  185. Kaufmann, P.: Entwicklung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds. Thieme, Stuttgart, 1981.Google Scholar
  186. Keene, D.R., Sakai, L.Y., Lunstrum, G.P., Morris, N.P., and Burgeson, R.E.: Type VII collagen forms an extended network of anchoring fibrils. J. Cell Biol. 104: 611–621, 1987.PubMedCrossRefGoogle Scholar
  187. Kilbride, H.W., Thibeault, D.W., Yeast, J., Maulik, D., and Grundy, H.O.: Fetal breathing is not a predictor of pulmonary hypoplasia in pregnancies complicated by oligohydramnios. Lancet 1: 305–306, 1988.PubMedCrossRefGoogle Scholar
  188. Kim, C.K., Naftolin, F., and Benirschke, K.: Immunohistochemical studies of the “X cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Am. J. Obstet. Gynecol. 111: 672–676, 1971.PubMedGoogle Scholar
  189. King, B.F.: Developmental changes in the fine structure of rhesus monkey amnion. Am. J. Anat. 157: 285–307, 1980.PubMedCrossRefGoogle Scholar
  190. King, B.F.: Developmental changes in the fine structure of the chorion laeve (smooth chorion) of the rhesus monkey placenta. Anat. Rec. 200: 163–175, 1981.PubMedCrossRefGoogle Scholar
  191. King, B.F.: Cell surface specializations and intercellular junctions in human amnionic epithelium: an electron microscopic and freeze-fracture study. Anat. Rec. 203: 73–82, 1982.PubMedCrossRefGoogle Scholar
  192. King, B.F.: Distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat. Rec. 212: 57–62, 1985.PubMedCrossRefGoogle Scholar
  193. Kino, Y.: Reductive malformations of the limbs in the rat fetus following amniocentesis. Congen. Anom. (Japan) 12: 35–44, 1972.Google Scholar
  194. Kinoshita, K., Satoh, K., and Sakamoto, S.: Human amniotic membrane and prostaglandin biosynthesis. Biol. Res. Pregnancy Perinatol. 5: 61–67, 1984.PubMedGoogle Scholar
  195. Kisalus, L.L., and Herr, J C • Immunocytochemical localization of heparan sulfate proteoglycan in human decidual cell secretory bodies and placental fibrinoid. Biol. Reprod. 39: 419–430, 1988.PubMedCrossRefGoogle Scholar
  196. Kisalus, L.L., Herr, J.C., and Little, C.D.: Immunolocalization of extracellular matrix proteins and collagen synthesis in first-trimester human decidua. Anat. Rec. 218: 402–415, 1987.PubMedCrossRefGoogle Scholar
  197. Kjaeldgaard, A., Pschera, H., Larsson, B., Gaffney, P., and Astedt, B.: Plasminogen activators and inhibitors in amniotic fluid. Fibrinolysis 3: 203–206, 1989.CrossRefGoogle Scholar
  198. Klima, G., Zerlauth, B., Richter, J., and Schmidt, W.: Die Mikrotextur von Amnion-und Chorionbindegewebe. Anat. Anz. 168: 395–400, 1989.PubMedGoogle Scholar
  199. Klima, G., Zerlauth, B., Wolf, H.J., and Schellnast, R.: A study of lectin bindings to the fetal membranes. Anat. Anz. 173: 87–91, 1991.PubMedGoogle Scholar
  200. Klinger, H.P., and Schwarzacher, H.G.: XY/XXY and sex chromatin positive cell distribution in a 60 mm human fetus. Cytogenetics 1: 266–290, 1962.PubMedCrossRefGoogle Scholar
  201. Kohler, H.G.: An unusual case of sirenomelia. Teratology 6: 295–302, 1972.PubMedCrossRefGoogle Scholar
  202. Kohler, H.G., and Collins, M.L.: Ligation of the umbilical cord by torn amniotic membrane. J. Obstet. Gynaecol. Br. Commonw. 79: 183–184, 1972.PubMedCrossRefGoogle Scholar
  203. Kratzsch, E., and Grygiel, I.-H.: Über das Vorkommen eines spezifischen Enzyms der Glucuronsäurebildung im menschlichen Amnion. Z. Zellforsch. 123: 566–571, 1972.PubMedCrossRefGoogle Scholar
  204. Küster, J.: Adultes Teratom (“Dermoid”) der Placenta. Arch. Gynecol. 133: 93–99, 1928.Google Scholar
  205. Lage, J.M., Van Marter, L.J., and Bieber, F.R.: Questionable role of amniocentesis in the formation of amniotic bands. J. Reprod. Med. 33: 71–73, 1988.PubMedGoogle Scholar
  206. Landing, B.H.: Amnion nodosum: a lesion of the placenta apparently associated with deficient secretion of fetal urine. Am. J. Obstet. Gynecol. 60: 1339–1342, 1950a.PubMedGoogle Scholar
  207. Landing, B.H.: The pathogenesis of amniotic-fluid embolism. N. Engl. J. Med. 243: 590–596, 1950b.PubMedCrossRefGoogle Scholar
  208. Laufer, A., Polishuk, W.Z., Boxer, J., and Ganzfried, R.: Studies of amniotic membranes. J. Reprod. Fertil. 12: 99105, 1966.Google Scholar
  209. Lauweryns, J., Bernat, R., Lerut, A., and Detournay, G.: Intrauterine pneumonia: an experimental study. Biol. Neonate 22: 215–231, 1973.Google Scholar
  210. Lavery, J.P., and Miller, C.E: The viscoelastic nature of chorioamniotic membranes. Obstet. Gynecol. 50: 467–472, 1977.PubMedGoogle Scholar
  211. Lavery, J.P., Miller, C.E., and Johns, P.: Effect of meconium on the strength of chorioamniotic membranes. Obstet. Gynecol. 56: 711–715, 1980.PubMedGoogle Scholar
  212. Lavery, J.P., Miller, E., and Knight, R.D.: The effect of labor on the rheologic response of chorioamniotic membranes. Obstet. Gynecol. 60: 87–92, 1982.PubMedGoogle Scholar
  213. Leary, O.C., and Hertig, A.T.: Pathogenesis of amniotic fluid embolism. I. Possible placental factors—aberrant squamous cells in placenta. N. Engl. J. Med. 243: 588–590, 1950.Google Scholar
  214. Legge, M.: Dark brown amniotic fluid—identification of contributing pigments. Br. J. Obstet. Gynaecol. 88: 632–634, 1981.PubMedCrossRefGoogle Scholar
  215. Leivo, I., and Engvall, E.: C3d fragment of complement interacts with laminin and binds to basement membranes of glomerulus and trophoblast. J. Cell Biol. 103: 1091–1100, 1986.PubMedCrossRefGoogle Scholar
  216. Levick, K.: Pregnancy loss and fathers with Ehlers-Danlos syndrome. Lancet 2: 1151, 1989.PubMedCrossRefGoogle Scholar
  217. Linnala, A., Balza, E., Zardi, L., and Virtanen, I.: Human amnion epithelial cells assemble tenascins and three fibronectin isoforms in the extracellular matrix. FEBS Lett. 317: 74–78, 1993.PubMedCrossRefGoogle Scholar
  218. Linton, G., and Lilford, R.J.: False-negative finding on chorionic villus sampling. Lancet 2: 630, 1986.PubMedCrossRefGoogle Scholar
  219. Liotta, L.A., Lee, C.W., and Morakis, D.J.: New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 11: 141–152, 1980.PubMedCrossRefGoogle Scholar
  220. Lister, U.M.: Ultrastructure of the human amnion, chorion and fetal skin. J. Obstet. Gynaecol. Br. Commonw. 75: 327–341, 1968.PubMedCrossRefGoogle Scholar
  221. Lloyd, S.J., Garlid, K.D., Reba, R.C., and Seeds, A.E.: Permeability of different layers of the human placenta to isotopic water. J. Appl. Physiol. 26: 274–276, 1969.PubMedGoogle Scholar
  222. Lockwood, C., Ghidini, A., and Romero, R.: Amniotic band syndrome in monozygotic twins: prenatal diagnosis and pathogenesis. Obstet. Gynecol. 71: 1012–1016, 1988.PubMedGoogle Scholar
  223. Lockwood, C., Ghidini, A., Romero, R., and Hobbins, J.C.: Amniotic band syndrome: reevaluation of its pathogenesis. Am. J. Obstet. Gynecol. 160: 1030–1033, 1989.PubMedGoogle Scholar
  224. Lockwood, C.J., Bach, R., Guha, A., Zhou, X., Miller, W.A., and Nemerson, Y • Amniotic fluid contains tissue factor, a potent initiator of coagulation. Am. J. Obstet. Gynecol. 165: 1335–1341, 1991.Google Scholar
  225. Lopez Bernal, A., Hansell, D.J., Khong, T.Y., Keeling, J.W., and Turnbull, A.C.: Prostaglandin E production by the fetal membranes in unexplained preterm labour and preterm labour associated with chorioamnionitis. Br. J. Obstet. Gynaecol. 96: 1133–1139, 1989.Google Scholar
  226. Lubinsky, M., Sujansky, E., Sanger, W., Salyards, P., and Severn, C.: Familial amniotic bands. Am. J. Med. Genet. 14: 81–87, 1983.PubMedCrossRefGoogle Scholar
  227. Lucas, A., Adrian, T.E., Aynsley-Green, A., and Bloom, S.R.: Gut hormones in fetal distress. Lancet 2: 968, 1979a.PubMedCrossRefGoogle Scholar
  228. Lucas, A., Christofides, N.D., Adrian, T.E., Bloom, S.R., and Aynsley-Green, A.: Fetal distress, meconium, and motilin. Lancet 1: 718, 1979b.PubMedCrossRefGoogle Scholar
  229. Luckett, P.: The origin of extraembryonic mesoderm in the early human and rhesus monkey embryos. Anat. Rec. 169: 369–370, 1971.Google Scholar
  230. Luckett, W P • Amniogenesis in the early human and rhesus monkey embryos. Anat. Rec. 175: 375, 1973.Google Scholar
  231. Ludwig, H., Metzger, H., Korte, M., and Wolf, H.: Die freie Oberfläche des Amnionepithels: rasterelektronenmikroskopische Studie. Arch. Gynecol. 217: 141–154, 1974.Google Scholar
  232. MacLachlan, T.B.: A method for the investigation of the strength of the fetal membranes. Am. J. Obstet. Gynecol. 91: 309–313, 1965.PubMedGoogle Scholar
  233. Macri, C.J., Schrimmer, D.B., Leung, A., Greenspoon, J.S., and Paul, R.H.: Prophylactic amnioinfusion improves outcome of pregnancy complicated by thick meconium and oligohydramnios. Am. J. Obstet. Gynecol. 167: 117–121, 1992.PubMedGoogle Scholar
  234. Madri, J.A., Williams, S.K., Wyatt, T., and Mezzio, C.: Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97: 153–165, 1983.PubMedCrossRefGoogle Scholar
  235. Mahmoud, E.L., Benirschke, K., Vaucher, Y.E., and Poitras, P.: Motilin levels in term neonates who have passed meconium prior to birth. J. Pediatr. Gastroenterol. Nutr. 7: 95–99, 1988.PubMedCrossRefGoogle Scholar
  236. Mahony, B.S., Filly, R.A., Callen, P.W., and Golbus, M.S.: The amniotic band syndrome: antenatal sonographic diagnosis and potential pitfalls. Am. J. Obstet. Gynecol. 152: 63–68, 1985.PubMedGoogle Scholar
  237. Malak, T.M., Ockleford, C.D., Bell, S.C., Dalgleish, R., Bight, N., and MacVicar, J.: Confocal immunofluorescence localization of collagen type-I, type-III, type-IV, type-V and type-VI and their ultrastructural organization in term human fetal membranes. Placenta 14: 385–406, 1993.PubMedCrossRefGoogle Scholar
  238. Masson, J.C., Philippe, E., Korn, R., Irrmann, M., Dehalleux, J.M., and Gandar, R.: Amnion nodosum. Rev. Fr. Gynecol. Obstet. 61: 701–707, 1966.PubMedGoogle Scholar
  239. Matsubara, S., and Tamada, T.: Ultracytochemical study of the permeability of the human amniotic epithelium. Acta Obstet. Gynaecol. Jpn. 43: 641–646, 1991.Google Scholar
  240. McCoshen, J.A., Tulloch, H.V., Johnson, K., and Odowichuk, C.: Evidence of a differential chorionic influence on prostaglandin E2 release by human amnion before and after term labour. Placenta 7: 479, 1986.CrossRefGoogle Scholar
  241. McGregor, J.A., French, J.I., Lawellin, D., Franco-Buff, A., Smith, C., and Todd, J.K.: Bacterial protease-induced reduction of chorioamniotic membrane strength and elasticity. Obstet. Gynecol. 69: 167–174, 1987.PubMedGoogle Scholar
  242. Mercer, L.J., and Brown, L.G.: Fetal outcome with oligohydramnios in the second trimester. Obstet. Gynecol. 67: 840842, 1986.Google Scholar
  243. Metz, J., Weihe, E., and Heinrich, D.: Intercellular junctions in the full term human placenta. I. Syncytiotrophoblastic layer. Anat. Embryol. (Basel) 158: 41–50, 1979.CrossRefGoogle Scholar
  244. Meudt, R.: Beitrag zur Festigkeit der menschlichen Eihaut. Gynaecologia 162: 430–434, 1966.PubMedGoogle Scholar
  245. Michael, H., Ulbright, T.M., and Brodhecker, C.: Magma reticulare-like differentiation in yolk sac tumor and its pluripotential nature. Mod. Pathol. 1: 63A, 1988.Google Scholar
  246. Miller, P.W., Coen, R.W., and Benirschke, K.: Dating the time interval from meconium passage to birth. Obstet. Gynecol. 66: 459–462, 1985.PubMedGoogle Scholar
  247. Mitchell, J., Schulman, H., Fleischer, A., Farmakides, G., and Nadeau, D.: Meconium aspiration and fetal acidosis. Obstet. Gynecol. 65: 352–355, 1985.PubMedGoogle Scholar
  248. Mitchell, M.D.: Sources of eicosanoids within the uterus during pregnancy. In, The Onset of Labor: Cellular and Integrative Mechanisms. D. McNellis ed., pp. 165–181. Perinatology Press, Ithaca, NY, 1988.Google Scholar
  249. Modesti, A., Kalebic, T., Scarpa, S., Togo, S., Grotendorst, G., Liotta, L.A., and Triche, T.J.: Type V collagen in human amnion is a 12nm fibrillar component of the pericellular interstitium. Eur. J. Cell Biol. 35: 246–255, 1984.PubMedGoogle Scholar
  250. Moerman, P., Fryns, J.-P., Vandenberghe, K., and Lauweryns, J.M.: Constrictive amniotic bands, amniotic adhesions, and limb-body wall complex: discrete disruption sequences with pathogenetic overlap. Am. J. Med. Genet. 42: 470–479, 1992.PubMedCrossRefGoogle Scholar
  251. Moessinger, A.C., Blanc, W.A., Byrne, J., Andrews, D., Warburton, D., and Bloom, A.: Amniotic band syndrome associated with amniocentesis. Am. J. Obstet. Gynecol. 141: 588–591, 1981.PubMedGoogle Scholar
  252. Mühlhauser, J., Crescimanno, C., Rajaniemi, H., Parkkila, S., Castellucci, M., Milovanov, A.S., and Kaufmann, P.: Immunohistochemistry of carbonic anhydrase in the human placenta and fetal membranes. Histochemistry 101: 91–98, 1994.PubMedCrossRefGoogle Scholar
  253. Muir, R., and Niven, J.S.F.: The local formation of blood pigments. J. Pathol. 41: 183–197, 1935.CrossRefGoogle Scholar
  254. Mukaida, T., Yoshida, K., Kikyokawa, T., and Soma, H.: Surface structure of the placental membranes. J. Clin. Electron Microsc. 10: 447–448, 1977.Google Scholar
  255. Naeye, R.L.: Factors that predispose to premature rupture of the fetal membranes. Obstet. Gynecol. 60: 93–98, 1982.PubMedGoogle Scholar
  256. Nanbu, Y., Fujii, S., Konishi, I., Nonogaki, H., and Mori, T.: CA 125 in the epithelium closely related to the embryonic ectoderm: the periderm and the amnion. Am. J. Obstet. Gynecol. 161: 462–467, 1989.PubMedGoogle Scholar
  257. Nathan, L., Leveno, K.J., Carmody, T.J., Kelly, M.A., and Sherman, M.L.: Meconium: a 1990s perspective on an old obstetric hazard. Obstet. Gynecol. 83: 329–332, 1994.PubMedGoogle Scholar
  258. Nickell, K.A., and Stocker, J.T.: Placental teratoma: a case report. Pediatr. Pathol. 7: 645–650, 1987.PubMedCrossRefGoogle Scholar
  259. Novak, R., and Kokomoor, F.: Placental pathology of meconium-stained premature infants [abstract 35]. Mod. Pathol. 1: 7p, 1988.Google Scholar
  260. Nyberg, D.A., Mahony, B.S., and Pretorius, D.H.: Diagnostic Ultrasound of Fetal Anomalies: Text and Atlas. Year Book, Chicago, 1990.Google Scholar
  261. Ockleford, C., Bright, N., Hubbard, A., d’Lacey, C., Smith, J., Gardiner, L., Sheikh, T., Albentosa, M., and Turtle, K.: Micro-trabeculae, macro-plaques or mini-basement membranes in human term fetal membranes. Philos. Trans. R. Soc. Lond. [Biol] 342: 121–136, 1994.CrossRefGoogle Scholar
  262. Ockleford, C.D., Malak, T., Hubbard, A., Bracken, K., Burton, S.A., Bright, N., Blakey, G., Goodliffe, J., Garrod, D., and d’Lacey, C.: Human amniochorion cytoskeletons at term. Placenta 14: A56, 1993.CrossRefGoogle Scholar
  263. Okamoto, E., Takagi, T., Azuma, C., Kimura, T., TokugawaGoogle Scholar
  264. Y., Mitsuda, N., Saji, F., and Tanizawa, O.: Expression of the corticotropin-releasing hormone (CRH) gene in human placenta and amniotic membrane. Horm. Metab. Res. 22: 394–397, 1990.CrossRefGoogle Scholar
  265. Okazaki, T., Casey, M.L., Okita, J.R., MacDonald, P.C., and Johnston, J.M.: Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am. J. Obstet. Gynecol. 139: 373–381, 1981a.PubMedGoogle Scholar
  266. Okazaki, T., Sagawa, N., Bleasdale, J.E., Okita, J.R., MacDonald, P.C., and Johnston, J.M.: Initiation of human parturition. XIII. Phospholipase C, phospholipase A2, and diacylglycerol lipase activities in fetal membranes and decidua vera tissues from early and late gestation. Biol. Reprod. 25: 103–109, 1981b.PubMedCrossRefGoogle Scholar
  267. OlSh, K.S., Gee, H., Rushton, I., and Fowlie, A.: Massive subchorionic thrombohaematoma presenting as a placental tumor: a case report. Br. J. Obstet. Gynaecol. 94: 995–997, 1987.CrossRefGoogle Scholar
  268. Olson, D.M., and Smieja, Z.: Arachidonic acid incorporation into lipids of term human amnion. Am. J. Obstet. Gynecol. 159: 995–1001, 1988.PubMedGoogle Scholar
  269. Olson, D.M., Skinner, K., and Challis, J.R.: Prostaglandin output in relation to parturition by cells dispersed from human intrauterine tissues. J. Clin. Endocrinol. Metab. 57: 694–699, 1983.PubMedCrossRefGoogle Scholar
  270. Opitz, H., and Bernoth, E.: Strukturuntersuchungen der menschlichen Eihaut nach vor-und rechtzeitigem Blasensprung. Arch. Gynecol. 196: 435–446, 1962.Google Scholar
  271. Ostrea, E.M., and Naqvi, M.: The influence of gestational age on the ability of the fetus to pass meconium in utero: clinical implications. Acta Obstet. Gynecol. Scand. 61: 275277, 1982.Google Scholar
  272. Panayiotis, G., and Grunstein, S.: Extramembranous pregnancy in twin gestation. Obstet. Gynecol. 53: 345–355, 1979.Google Scholar
  273. Paterson, W.G., Grant, K.A., Grant, J.M., and McLean, N.: The pathogenesis of amniotic fluid embolism with particular reference to transabdominal amniocentesis. Eur. J. Obstet. Gynecol. Reprod. Biol. 7: 319–324, 1977.PubMedCrossRefGoogle Scholar
  274. Patten, R.M., Allen, M.V., Mack, L.A., Wilson, D., Nyberg, D., Hirsch, J., and Viamont, T.: Limb-body wall complex: in utero sonographic diagnosis of a complicated fetal malformation. Am. J. Radiol. 146: 1019–1024, 1986.Google Scholar
  275. Patterson, T.J.S.: Amniotic bands. In, The Human Amnion and Chorion. G.L. Boume, ed. Lloyd-Luke, London, 1962.Google Scholar
  276. Pearlstone, M., and Baxi, L.: Subchorionic hematoma: a review. Obstet. Gynecol. Surv. 48: 65–68, 1993.PubMedCrossRefGoogle Scholar
  277. Pedersen, J.F., and Mantoni, M.: Prevalence and signifcance of subchorionic hemorrhage in threatened abortion: a sonographic study. Am. J. Roentgenol. 154: 535–537, 1990.CrossRefGoogle Scholar
  278. Perlman, M., Tennenbaum, A., Menash, M., and Ornoy, A.: Extramembranous pregnancy: maternal, placental, and perinatal implications. Obstet. Gynecol. 55: 34S - 37S, 1980.PubMedCrossRefGoogle Scholar
  279. Petry, G.: Die Bedeutung der Embryonalhüllen bei der Frage nach der Herkunft alkalischer Phosphatase im menschlichen Fruchtwasser. Z. Geburtshilfe Gynäkol. 158: 171–180, 1962.PubMedGoogle Scholar
  280. Philippe, E., Dourov, N., Muller, P., and Fruhling, L.: Le substratum morphologique de l’embolie amniotique: aGoogle Scholar
  281. propos de deux observations d’incoagulabilité sanguine par embolie amniotique. Ann. Anat. Pathol. 6: 479–496, 1961.Google Scholar
  282. Pilgram, H.: Die Zotten und Karunkeln des menschlichen Amnion Marburg, 1889. Cited by Blanc et al. (1962).Google Scholar
  283. Platt, L.D., DeVore, G.R., and Gimovsky, M.L.: Failed amniocentesis: the role of membrane tenting. Am. J. Obstet. Gynecol. 144: 479–480, 1982.PubMedGoogle Scholar
  284. Poisner, A.M., Wood, G.W., Poisner, R., and Inagami, T.: Localization of renin in trophoblasts in human chorion laeve at term pregnancy. Endocrinology 109: 1150–1155, 1981.PubMedCrossRefGoogle Scholar
  285. Polano, O.: Beiträge zur Anatomie und Physiologie des menschlichen Amnions. Z. Anat. Entwicklungsgesch. 63: 539–553, 1922.CrossRefGoogle Scholar
  286. Polet, H.: The effect of hydrocortisone on the membranes of primary human amnion cells in vitro. Exp. Cell Res. 41: 316–323, 1966.PubMedCrossRefGoogle Scholar
  287. Polishuk, W.Z., Kohane, S., and Peranio, A.: The physical properties of fetal membranes. Obstet. Gynecol. 20: 204210, 1962.Google Scholar
  288. Polishuk, W.Z., Kohane, S., and Hadar, A.: Fetal weight and membrane tensile strength. Am. J. Obstet. Gynecol. 20: 204–250, 1964.Google Scholar
  289. Polishuk, W.Z., Boxer, J., and Granzfried, R.: Lipid in amniotic membranes. Am. J. Obstet. Gynecol. 91: 61–64, 1965.PubMedGoogle Scholar
  290. Pomerance, W., Biezenski, J.J., Moltz, A., and Goodman, J.: Origin of amniotic fluid lipids. II. Abnormal pregnancy. Obstet. Gynecol. 38: 379–382, 1971.PubMedGoogle Scholar
  291. Porreco, R.P., Young, P.E., Resnik, R., Cousins, L., Jones, O.W., Richards, T., Kernahan, C., and Matson, M.: Reproductive outcome following amniocentesis for genetic indications. Am. J. Obstet. Gynecol. 143: 653–660, 1982.PubMedGoogle Scholar
  292. Pritchard, E.T., Armstrong, W.D., and Wilt, J.C.: Examination of lipids from amnion, chorion, and vernix. Am. J. Obstet. Gynecol. 100: 289–298, 1968.Google Scholar
  293. Pysher, T.J.: Discordant congenital malformations in monozygous twins: the amniotic band disruption complex. Diagn. Gynecol. Obstet. 2: 221–225, 1980.PubMedGoogle Scholar
  294. Queenan, J.T., Thompson, W., Whitfield, C.R., and Shah, S.I.: Amniotic fluid volumes in normal pregnancies. Am. J. Obstet. Gynecol. 114: 34–38, 1972.PubMedGoogle Scholar
  295. Rajabi, M.R., Dean, D.D., and Woessner, J.F.: Changes in active and latent collagenase in human placenta around time of parturition: Am. J. Obstet. Gynecol. 163: 499–505, 1990.PubMedGoogle Scholar
  296. Randel, S.B., Filly, R.A., Callen, P.W., Anderson, R.L., and Golbus, M.S.: Amniotic sheets. Radiology 166: 633636, 1988.Google Scholar
  297. Rao, C.V., and Lei, Z.M.: The presence of gonadotropin receptors in human placenta, amnion, chorion and decidua. Placenta 10: 458, 1989.CrossRefGoogle Scholar
  298. Rao, C.V., Carman, F.R., Chegini, N., and Schultz, G.S.: Binding sites for epidermal growth factor in human fetal membranes. J. Clin. Endocrinol. Metab. 58: 1034–1042, 1984.PubMedCrossRefGoogle Scholar
  299. Rastan, S., Kaufman, M.H., Handyside, A.H., and Lyon, M.F.: X-chromosome inactivation in extraembryonic membranes of diploid parthenogenetic mouse embryosGoogle Scholar
  300. demonstrated by differential staining. Nature 288: 172–173, 1980.CrossRefGoogle Scholar
  301. Reale, E., Wang, T., Zaccheo, D., Maganza, C., and Pescetto, G.: Junctions on the maternal blood surface of the human placental syncytium. Placenta 1: 245–258, 1980.PubMedCrossRefGoogle Scholar
  302. Redmond, A.D.: Amnion dressing. Lancet 1: 902, 1984.PubMedCrossRefGoogle Scholar
  303. Rees, M.C.P., di Marzo, V., Lopez Bernal, A., Tippins, J.R., Morris, H.R., and Turnbull, A.C.: Leukotriene release by human fetal membranes, placenta and decidua in relation to parturition. J. Endocrinol. 118: 497–500, 1988.PubMedCrossRefGoogle Scholar
  304. Rehder, H., and Weitzel, H.: Intrauterine amputations after amniocentesis. Lancet 1: 382, 1978.PubMedCrossRefGoogle Scholar
  305. Reisfield, D.R.: Congenital defect in the fetal membranes: a condition simulating spontaneous rupture. Bull. Sloane Hosp. Women 4: 16–18, 1958.Google Scholar
  306. Reshef, E., Lei, Z.M., Rao, C.V., Pridham, D.D., Chegini, N., and Luborsky, J.L.: The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. J. Clin. Endocrinol. Metab. 70: 421–430, 1990.PubMedCrossRefGoogle Scholar
  307. Resnik, R., Swartz, W.H., Plumer, M.H., Benirschke, K., and Stratthaus, M.E.: Amniotic fluid embolism with survival. Obstet. Gynecol. 47: 295–298, 1976.PubMedGoogle Scholar
  308. Robb, S.A., and Hytten, F.E.: Placental glycogen. Br. J. Obstet. Gynaecol. 83: 43–53, 1976.PubMedCrossRefGoogle Scholar
  309. Roberts, J.S., McCraken, J.A., Gavagan, J.E., and Soloff, M.S.: Oxytocin-stimulated release of prostaglandin F2 from ovine endometrium in vitro: correlation with estrous cycle and oxytocin-receptor binding. Endocrinology 99: 1107–1114, 1976.PubMedCrossRefGoogle Scholar
  310. Rogers, B.B., Widness, J.A., Coustan, D.R., and Singer, D.B.: Fetal acidosis and placental pathology [abstract 498]. Mod. Pathol. 3 (1): 85A, 1990.Google Scholar
  311. Ropers, H.H., Wolff, G., and Hitzeroth, H.W.: Preferential X inactivation in human placenta membranes: is the paternal X inactive in early embryonic development of female mammals? Hum. Genet. 43: 265–273, 1978.Google Scholar
  312. Rossant, J., and Croy, B.A.: Genetic identification of tissue of origin of cellular populations within the mouse placenta. J. Embryol. Exp. Morphol. 86: 177–189, 1985.PubMedGoogle Scholar
  313. Rote, N.S., Menon, R., Swan, K.F., Lyden, T.W., and Fortunato, S.J.: Expression of IL-1ß and IL-6 protein and mRNA in amniochorionic membrane. Placenta 14: A63, 1993.Google Scholar
  314. Rubovits, W.H., Taft, E., and Neuwelt, F.: The pathologic properties of meconium. Am. J. Obstet. Gynecol. 36: 50 1505, 1938.Google Scholar
  315. Sakbun, V., Ali, S.M., Greenwood, F.C., and Bryant-Greenwood, G.D.: Human relaxin in the amnion, chorion, decidua parietalis, basal plate, and placental trophoblast by immunocytochemistry and Northern analysis. J. Clin. Endocrinol. Metab. 70: 508–514, 1990a.PubMedCrossRefGoogle Scholar
  316. Sakbun, V., Ali, S.M., Lee, Y.A., Jara, C.S., and Bryant-Greenwood, G.D.: Immunocytochemical localization and messenger ribonucleic acid concentrations for human placental lactogen in amnion, chorion, decidua, and placenta. Am. J. Obstet. Gynecol. 162: 1310–1317, 1990b.PubMedGoogle Scholar
  317. Sala, M.A., and Matheus, M.: Histochemical study of the fetal membranes in the human term pregnancy. Gegenbaurs Morphol. Jahrb. 130: 699–705, 1984.Google Scholar
  318. Salazar, H., Kanbour, A.I., and Pardo, M.: Amnion nodosum: ultrastructure and histopathogenesis. Arch. Pathol. 98: 39–46, 1974.PubMedGoogle Scholar
  319. Santiago-Schwarz, F., and Fleit, H.B.: Identification of non-adherent mononuclear cells in human cord blood that differentiate into macrophages. J. Leukocyte Biol. 43: 51–59, 1988.PubMedGoogle Scholar
  320. Schindler, A.E.: Hormones in human amniotic fluid. Monogr. Endocrinol. 21: 1–158, 1982.PubMedCrossRefGoogle Scholar
  321. Schindler, P.D.: Nuclear deoxyribonucleic acid (DNA) content, nuclear size and cell size in the human amnion epithelium. Acta Anat. (Basel) 44: 273–285, 1961.Google Scholar
  322. Schmidt, W.: Der Feinbau der reifen menschlichen Eihäute. Z. Anat. Entwicklungsgesch. 119: 203–222, 1956.PubMedCrossRefGoogle Scholar
  323. Schmidt, W.: Struktur und Funktion des Amnionepithels von Menschen und Huhn. Z. Zellforsch. 61: 642–660, 1963.PubMedCrossRefGoogle Scholar
  324. Schmidt, W.: Über den paraplacentaren, fruchtwassergebundenen Stofftransport beim Menschen. I. Histochemische Untersuchung der in den Eihäuten angereicherten Stoffe. Z. Anat. Entwicklungsgesch. 124: 321–334, 1965a.CrossRefGoogle Scholar
  325. Schmidt, W.: Untersuchungen zur Frage des paraplazentaren Stofftransportes beim Menschen. Anat. Anz. 115: 161–163, 1965b.Google Scholar
  326. Schmidt, W.: Über den paraplacentaren, fruchtwassergebundenen Stofftransport beim Menschen. II. Nachweis der vom Amnion abgegebenen Lipide im Fruchtwasser und im Dünndarm des Keimes. Z. Anat. Entwicklungsgesch. 126: 276–288, 1967.PubMedCrossRefGoogle Scholar
  327. Schmidt, W.: The amniotic fluid compartment: the fetal habitat. Adv. Anat. Embryol. Cell Biol. 127: 1–100, 1992.PubMedCrossRefGoogle Scholar
  328. Schmidt, W., Eberhagen, D., and Svejcar, J.: Über den paraplazentaren, fruchtwassergebundenen Stofftransport beim Menschen. III. Quantitative und qualitative Analyse der im Fruchtwasser enthaltenen Stoffe. Z. Anat. Entwicklungsgesch. 135: 210–221, 1971.PubMedCrossRefGoogle Scholar
  329. Schulze, B., Schlesinger, C.H., and Miller, K.: Chromosomal mosaicism confined to chorionic tissue. Prenat. Diagn. 7: 451–453, 1987.PubMedCrossRefGoogle Scholar
  330. Schwarzacher, H.G.: Beitrag zur Histogenese des men- schlichen Amnion Acta Anat. (Basel) 43: 303–311, 1960.CrossRefGoogle Scholar
  331. Schwarzacher, H.G., and Klinger, H.P.: Die Entstehung mehrkerniger Zellen durch Amitose in Amnionepithel des Menschen und die Aufteilung des chromosomalen Materials auf deren einzelne Kerne. Z. Zellforsch. 60: 741–754, 1963.PubMedCrossRefGoogle Scholar
  332. Seeds, A.E., Eichhorst, B.C., and Stolee, A.: Factors determining human chorion laeve permeability in vitro. Am. J. Obstet. Gynecol. 128: 13–21, 1977.PubMedGoogle Scholar
  333. Seeds, J.W., Cefalo, R.C., and Herbert, W N P • Amniotic band syndrome. Am. J. Obstet. Gynecol. 144: 243–248, 1982.Google Scholar
  334. Seidman, J.D., Abbondanzo, S.L., Watkin, W.G., Ragsdale, B., and Manz, H.J.: Amniotic band syndrome: report of two cases and review of the literature. Arch. Pathol. Lab. Med. 113: 891–897, 1989.PubMedGoogle Scholar
  335. Sepkowitz, S.: Influence of the legal imperative and medical guidelines on the incidence and management of the meconium-stained newborn. Am. J. Dis. Child. 141: 1124 1127, 1987.Google Scholar
  336. Shanklin, D.R., and Scott, J.S.: Massive subchorial throm-Google Scholar
  337. bohaematoma (Breus’ mole). Br. J. Obstet. Gynaecol. 82: 476–487, 1975.Google Scholar
  338. Shephard, T.H., Fantel, A.G., Fujinaga, M., and Fitzsimmons, J.: Amniotic band disruption syndrome: why do their faces look alike? [abstract]. Congen. Anom. (Japan) 37: 491–492, 1988.Google Scholar
  339. Shimizu, T., Dudley, D.K.L., Borodchack, P., Belcher, J., Perkins, S.L., and Gibb, W.: Effect of smoking on fibronectin production by human amnion and placenta. Gynecol. Obstet. Invest. 34: 142–145, 1992.PubMedCrossRefGoogle Scholar
  340. Silver, M.M., Thurston, W.A., and Patrick, J.E.: Perinatal pulmonary hyperplasia due to laryngeal atresia. Hum. Pathol. 19: 110–113, 1988.PubMedCrossRefGoogle Scholar
  341. Singh, G., and Singh, S.: Hemorrhage induced by amniocentesis and vascular clamping in the limbs of rat fetuses. Congen. Anom. (Japan) 18: 89–93, 1978.Google Scholar
  342. Singhas, C.A.: Lectin histochemistry of the human amniochorionic membrane complex. Placenta 13: 523–534, 1992.PubMedCrossRefGoogle Scholar
  343. Sinha, A.A.: Ultrastructure of human amnion and amniotic plaques of normal pregnancy. Z. Zellforsch. 122: 1–14, 1971.PubMedCrossRefGoogle Scholar
  344. Skinner, K.A., and Challis, J.R.: Changes in the synthesis and metabolism of prostaglandins by human fetal membranes and decidua at labor. Am. J. Obstet. Gynecol. 151: 519–523, 1985.PubMedGoogle Scholar
  345. Skinner, S.J., Campos, G.A., and Liggins, G.C.: Collagen content of human amniotic membranes: effect of gestational length and premature rupture. Obstet. Gynecol. 57: 487489, 1981.Google Scholar
  346. Smadja, A., Hoang Ngoc Minh, and Nguyen, T.L.: Conception nouvelle sur la physiologie de la circulation amniotique. Rev. Fr. Gynecol. 69: 111–114, 1974.Google Scholar
  347. Smieja, Z., Zakar, T., Walton, J.C., and Olson, D.M.: Prostaglandin endoperoxide synthase kinetics in human amnion before and after labor at term and following preterm labor. Placenta 14: 163–175, 1993.PubMedCrossRefGoogle Scholar
  348. Smith, L.A., and Pounder, D.J.: A teratoma-like lesion of the placenta: a case report. Pathology 14: 85–87, 1982.PubMedCrossRefGoogle Scholar
  349. Sonek, J., Gabbe, S.G., Iams, J.D., and Kniss, D.A.: Morphologic changes in the human amnion epithelium that accompany labor as seen with scanning and transmission electron microscopy. Am. J. Obstet. Gynecol. 164: 1174 1180, 1991.Google Scholar
  350. Spirt, B.A., Gordon, L.P., and Silverman, R.K.: Letter to the editor. J. Ultrasound Med. 3: 167–168, 1993.Google Scholar
  351. Starck, D.: Embryologie. Thieme, Stuttgart, 1975.Google Scholar
  352. Steer, P.J., Eigbe, F., Lissauer, T.J., and Beard, R.W.: Interrelationships among abnormal cardiotocograms in labor, meconium staining of the amniotic fluid, arterial cord blood pH, and Apgar scores. Obstet. Gynecol. 74: 715–720, 1989.PubMedGoogle Scholar
  353. Steiner, P.E., and Lushbaugh, C.C.: Maternal pulmonary embolism by amniotic fluid as cause of obstetric shock and unexpected deaths in obstetrics. J.A.M.A. 117: 1245–1254, 1340–1345, 1941.Google Scholar
  354. Stempel, L.E., and Nelson, D.M.: Retained chorionic membrane following repeated amniocenteses. Am. J. Obstet. Gynecol. 142: 242–243, 1982.PubMedGoogle Scholar
  355. Street, D.M., and Cunningham, F.: Congenital anomaliesGoogle Scholar
  356. caused by intra-uterine bands. Clin. Orthop. 37: 82–97, 1964.Google Scholar
  357. Streeter, G.L.: Focal deficiencies in fetal tissues and their relation to intrauterine amputations. Contrib. Embryol. Carnegie Inst. 22: 1–15, 1930.Google Scholar
  358. Sutcliffe, R.G.: The nature and origin of the soluble protein in human amniotic fluid. Biol. Rev. 50: 1–33, 1975.PubMedCrossRefGoogle Scholar
  359. Symchych, P.S., and Winchester, P.: Animal model: amniotic fluid deficiency and fetal lung growth in the rat. Am. J. Pathol. 90: 779–782, 1978.Google Scholar
  360. Symonds, E.M., Skinner, S.L., Stanley, M.A., Kirkland, J.A., and Ellis, R.C.: An investigation of the cellular source of renin in human chorion. J. Obstet. Gynaecol. Br. Commonw. 77: 885–890, 1970.PubMedCrossRefGoogle Scholar
  361. Szendi, B.: Experimentelle Untersuchungen beim Menschen Über den Austausch und die intrauterine Rolle des Fruchtwassers. Arch. Gynecol. 170: 205–227, 1940.Google Scholar
  362. Talmi, Y.P., Sigler, L., Inge, E., Finkelstein, Y., and Zohar, Y.: Antibacterial properties of human amniotic membranes. Placenta 12: 285–288, 1991.PubMedCrossRefGoogle Scholar
  363. Tarantal, A.F., and Hendrickx, A.G.: Amniotic band syndrome in a rhesus monkey: a case report. J. Med. Primatol. 16: 291–299, 1987.PubMedGoogle Scholar
  364. Teodoro, W.R., Andreucci, D., and Palma, J.A.: Short communication: placental collagen and premature rupture of fetal membranes. Placenta 11: 549–551, 1990.PubMedCrossRefGoogle Scholar
  365. Thiede, H.A., and Choate, J.W.: Chorionic localization in the human placenta by immunofluorescent staining. II. Demonstration of hCG in the trophoblast and amnion epithelium of immature and mature placentas. Obstet. Gynecol. 22: 433–443, 1963.PubMedGoogle Scholar
  366. Thomas, C.E.: The ultrastructure of human amnion epithelium. J. Ultrastruct. Res. 13: 65–84, 1965.PubMedCrossRefGoogle Scholar
  367. Thompson, V.M.: Amnion nodosum. J. Obstet. Gynaecol. Br. Emp. 67: 611–614, 1960.PubMedCrossRefGoogle Scholar
  368. Thorburn, M.J.: Sex-chromatin in a 13-day embryo. Lancet 1: 277–278, 1964.CrossRefGoogle Scholar
  369. Tibboel, D., Vermey-Keers, C., Klück, P., Gaillard, J.L.J., Kloppenberg, J., and Molenaar, J.C.: The natural history of gastroschisis during fetal life: development of the fibrous coating on the bowel loops. Teratology 33: 267–272, 1986.PubMedCrossRefGoogle Scholar
  370. Torpin, R.: Fetal Malformations Caused by Amnion Rupture during Gestation. Charles C Thomas, Springfield, IL, 1968. Torpin, R.: The Human Placenta. Its Shape, Form, Origin and Development. Charles C Thomas, Springfield, IL, 1969.Google Scholar
  371. Torpin, R., and Faulkner, A.: Intrauterine amputation with the missing member found in the fetal membranes. J.A.M.A. 198: 185–187, 1966.PubMedCrossRefGoogle Scholar
  372. Torpin, R., Goodman, L., and Gramling, Z.W.: Amnion string swallowed by fetus. Am. J. Obstet. Gynecol. 90: 829830, 1964.Google Scholar
  373. Toth, P., and Rao, C.V.: Direct novel regulation of cyclooxygenase (COX) and prostacyclin synthase (PGI2-S) by hCG in human amnion. Placenta 13: A63, 1992.Google Scholar
  374. Toth, P., Li, X., and Rao, C.V.: Expression of hCG/LH receptor gene and its functional coupling to the regulation of cyclooxygenase-1 and -2 enzymes in human fetal membranes. Placenta 14: A78, 1993.CrossRefGoogle Scholar
  375. Trasler, D.G., Walker, B.E., and Fraser, F.C.: Congenital malformations produced by amniotic-sac puncture. Science 124: 439, 1956.PubMedCrossRefGoogle Scholar
  376. Trimmer, K.J., and Gilstrap, L.C.: “Meconiumcrit” and birth asphyxia. Am. J. Obstet. Gynecol. 165: 1010–1013, 1991.PubMedGoogle Scholar
  377. Tuller, M A • Amniotic fluid embolism, afibrinogenemia, and disseminated fibrin thrombosis: Case report and review of the literature. Am. J. Obstet. Gynecol. 73: 273–287, 1957.Google Scholar
  378. Uhing, M.R., Bhat, R., Philobos, M., and Raju, T.N.K.: Value of amnioinfusion in reducing meconium aspiration syndrome. Am. J. Perinatol. 10: 43–45, 1993.PubMedCrossRefGoogle Scholar
  379. Unger, J.: Placental teratoma. Am. J. Clin. Pathol. 92: 37 1373, 1989.Google Scholar
  380. Usher, R.H., Boyd, M.E., McLean, F.H., and Kramer, M.S.: Assessment of fetal risk in postdate pregnancies. Am. J. Obstet. Gynecol. 158: 259–264, 1988.PubMedGoogle Scholar
  381. Uyehara, C.F.T., and Claybaugh, J.R.: Vasopressin metabolism in the amniotic sac of the fetal guinea pig. Endocrinology 123: 2040–2047, 1988.PubMedCrossRefGoogle Scholar
  382. Vago, T., and Chavkin, J.: Extramembranous pregnancy: an unusual complication of amniocentesis. Am. J. Obstet. Gynecol. 137: 511–512, 1980.PubMedGoogle Scholar
  383. Van Bogaert, L.-J., Maldague, P., and Staquet, J.-P.: Morphologic changes in the amniotic epithelium in relation to placental weight and fetal maturity. Arch. Gynecol. 226: 241–245, 1978.PubMedCrossRefGoogle Scholar
  384. Vantrappen, G., Janssens, J., Peeters, T.L., Bloom, S.R., Christofides, N.D., and Hellemans, J.: Motilin and the interdigestive migrating motor complex in man. Am. J. Dig. Dis. 24: 497–500, 1979.CrossRefGoogle Scholar
  385. Verbeek, J.H., Robertson, E.M., and Haust, M.D.: Basement membranes (amniotic, trophoblastic, capillary) and adjacent tissue in term placenta. Am. J. Obstet. Gynecol. 99: 1136–1146, 1967.PubMedGoogle Scholar
  386. Verjaal, M., Leschot, N.J., Wolf, N.J., and Treffers, P.E.: Karyotypic differences between cells from placenta and other fetal tissues. Prenat. Diagn. 7: 343–348, 1987.PubMedCrossRefGoogle Scholar
  387. Verma, I.C., and Ghai, O.P.: Study of sex chromatin in amniotic membranes of newborns. Indian J. Med. Res. 59: 1660–1665, 1971.Google Scholar
  388. Wagner, G., and Tygstrup, I.: Oligohydramnios and urinary malformations in early human pregnancy. Acta Pathol. Microbiol. Scand. 59: 273–278, 1963.CrossRefGoogle Scholar
  389. Wang, T.: Fetalmembranen des Menschen. Fortschr. Med. 46: 1185–1188, 1984.Google Scholar
  390. Wang, T., and Schneider, J.: Myofibroblasten im Bindegewebe des menschlichen Amnions. Z. Geburtshilfe Perinatol. 186: 164–168, 1982.PubMedGoogle Scholar
  391. Wang, T., and Schneider, J.: Cellular junctions on the free surface of human placental syncytium. Arch. Gynecol. 240: 211–216, 1987.PubMedCrossRefGoogle Scholar
  392. Wehbeh, H., Fleisher, J., Karimi, A., Mathony, A., and Minkoff, H.: The relationship between the ultrasonographic diagnosis of innocent amniotic band development and pregnancy outcomes. Obstet. Gynecol. 81: 565–568, 1993.PubMedGoogle Scholar
  393. Weitzner, J.S., Strassner, H.T., Rawlins, R.G., Mack, S.R., and Anderson, R.A.: Objective assessment of meconium content of amniotic fluid. Obstet. Gynecol. 76: 1143–1144, 1990.PubMedGoogle Scholar
  394. Wentworth, P., and Turnbull, I.: Bilateral renal agenesis (Potter’s syndrome) J. Reprod. Med. 3: 87–91, 1969.Google Scholar
  395. Weser, H., and Kaufmann, P.: Lichtmikroskopische und histochemische Untersuchungen an der Chorionplatte der reifen menschlichen Placenta. Arch. Gynecol. 225: 15–30, 1978.Google Scholar
  396. Wewer, U.M., Faber, M., Liotta, L.A., and Albrechtsen, R.: Immunochemical and ultrastructural assessment of the nature of pericellular basement membrane of human decidual cells. Lab. Invest. 53: 624–633, 1985.PubMedGoogle Scholar
  397. Wigglesworth, J.S., and Desai, R.: Is fetal respiratory function a major determinant of perinatal survival? Lancet 1: 264–267, 1982.PubMedCrossRefGoogle Scholar
  398. Wiswell, T.E., Foster, N.H., Slayter, M.V., and Hachey, W.E.: Management of a piglet model of the meconium aspiration syndrome with high-frequency or conventional ventilation. Am. J. Dis. Child. 146: 1287–1293, 1992.PubMedGoogle Scholar
  399. Wolf, H.J., and Desoye, G.: Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term. Histochemistry 100: 379–385, 1993.PubMedCrossRefGoogle Scholar
  400. Wolf, H.J., and Schmidt, W.: Histochemical study of carbohydrate metabolism in fetal membranes. Acta Histochem. 91: 3–11, 1991.PubMedCrossRefGoogle Scholar
  401. Wolf, H.J., Schmidt, W., and Drenckhahn, D.: Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res. 266: 385–389, 1991.PubMedCrossRefGoogle Scholar
  402. Wong, F.W.S., Loong, E.P.L., and Chang, A.M.Z.: Ultrasound diagnosis of meconium-stained amniotic fluid. Am. J. Obstet. Gynecol. 150: 359, 1985.Google Scholar
  403. Woolnough, H.C.: Amniotic band syndrome. [abstract]. Teratology 36: 150, 1987.Google Scholar
  404. Woyton, J.: Encephalocele attached to the placenta. Am. J. Obstet. Gynecol. 81: 1028–1032, 1961.PubMedGoogle Scholar
  405. Wynn, R.M.: Morphology of the placenta. In, Biology ofGoogle Scholar
  406. Gestation. N.S. Assali, ed. Academic Press, Orlands, FL, 1968.Google Scholar
  407. Wynn, R.: Ultrastructural development of the human decidua. Am. J. Obstet. Gynecol. 118: 652–670, 1974.PubMedGoogle Scholar
  408. Wynn, R.M., and French, G.L.: Comparative ultrastructure of the mammalian amnion. Obstet. Gynecol. 31: 759–774, 1968.PubMedGoogle Scholar
  409. Wynn, R.M., Sever, P.S., and Hellman, L.M.: Morphologic studies of the ruptured amnion. Am. J. Obstet. Gynecol. 99: 359–367, 1967.PubMedGoogle Scholar
  410. Yamaguchi, Y., Isemura, M., Yosizawa, Z., Kurosawa, K., Yoshinaga, K., Sato, A., and Suzuki, M.: Changes in the distribution of fibronectin in the placenta during normal human pregnancy. Am. J. Obstet. Gynecol. 152: 715–718, 1985.PubMedGoogle Scholar
  411. Yeomans, E.R., Gilstrap, L.C., Leveno, K.J., and Burris, J.S.: Meconium in the amniotic fluid and fetal acid-base status. Obstet. Gynecol. 73: 175–178, 1989.PubMedGoogle Scholar
  412. Yoder, B.A.: Meconium-stained amniotic fluid and respiratory complications: impact of selective tracheal suction. Obstet. Gynecol. 83: 77–84, 1994.PubMedGoogle Scholar
  413. Yoshimura, S., Nishimura, T., and Yoshida, Y.: The morphometry of the Sudan-III-positive granules in the cytoplasm of the human amniotic epithelium. Acta Cytol. (Baltimore) 224: 44–48, 1980.Google Scholar
  414. Young, I.D., Lindenbaum, R.H., Thompson, E.M., and Pembrey, M E • Amniotic bands in connective tissue disorders. Arch. Dis. Child. 60: 1061–1063, 1985.CrossRefGoogle Scholar
  415. Yurchenco, P.D., and Ruben, G.C.: Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105: 2559–2568, 1994.CrossRefGoogle Scholar
  416. Zorn, E.M., Hanson, F.W., Greve, L.C., Phelps-Sandall, B., and Tennant, F.R.: Analysis of the significance and origin of the discolored amniotic fluid detected at midtrimester amniocentesis. Am. J. Obstet. Gynecol. 154: 1234–1240, 1986.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Peter Kaufmann
    • 2
  1. 1.University Medical CenterUniversity of California, San DiegoSan DiegoUSA
  2. 2.Institut für Anatomie der Medizinischen FakultätRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations