Advertisement

Basic Structure of the Villous Trees

  • Kurt Benirschke
  • Peter Kaufmann

Abstract

The placental villi are the only components of the human placenta dually supplied—by maternal and fetal circulation. Despite their limited contribution to the total placental volume of about 45 to 55% (Schiebler & Kaufmann, 1981), it is the villi where nearly the entire maternofetal and fetomaternal exchange takes place. There is only a limited contribution by the extraplacental membranes. In addition, most metabolic and endocrine activities of the placenta have been localized to the villi (for review see Groeschel-Stewart, 1981; Miller & Thiede, 1984).

Keywords

Basal Lamina Human Placenta Placental Villus Villous Tree Intervillous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, E.D.: Review article: expression of proto-oncogenes in the placenta. Placenta 8:449–466, 1987.PubMedCrossRefGoogle Scholar
  2. Albe, K.R., Witkin, H.J., Kelley, L.K., and Smith, C.H.: Protein kinases of the human placental microvillous membrane. Exp. Cell Res. 147:167–176, 1983.PubMedCrossRefGoogle Scholar
  3. Alsat, E., Mondon, E., Rebourcet, R., Berthelier, M., Ehrlich, D., Cedard, L., and Goldstein, S.: Identification of specific binding sites for acetylated low density lipoprotein in microvillous membranes from human placenta. Mol. Cell. Endocrinol. 41:229–235, 1985.PubMedCrossRefGoogle Scholar
  4. Alvarez, H.: Proliferation du trophoblaste et sa relation avec l’hypertension arterielle de la toxemie gravidique. Gynecol. Obstet. (Paris) 69:581–588, 1970.Google Scholar
  5. Alvarez, H., Benedetti, W.L., Morel, R.L., and Scavarelli, M.: Trophoblast development gradient and its relationship to placental hemodynamics. Am. J. Obstet. Gynecol. 106:416–420, 1970.PubMedGoogle Scholar
  6. Alvarez, H., Medrano, C.V., Sala, M.A., and Benedetti, W.L.: Trophoblast development gradient and its relationship to placental hemodynamics. II. Study of fetal cotyledons from the toxemic placenta. Am. J. Obstet. Gynecol. 114:873–878, 1972.PubMedGoogle Scholar
  7. Al-Zuhair, A.G.H., Ibrahim, M.E.H., Mughal, S., and Mohammed, M.E.: Scanning electron microscopy of maternal blood cells and their surface relationship with the placenta. Acta Obstet. Gynecol. Scand. 62: 493–498, 1983.PubMedCrossRefGoogle Scholar
  8. Al-Zuhair, A.G.H., Ibrahim, M.E.A., Mughal, S., and Abdulla, M.A.: Loss and regeneration of the microvilli of human placental syncytiotrophoblast. Arch. Gynecol. 240:147–151, 1987.PubMedCrossRefGoogle Scholar
  9. Amstutz, E.: Beobachtungen über die Reifung der Chorionzotten in der menschlichen Placenta mit besonderer Berücksichtigung der Epithelplatten. Acta Anat. (Basel) 42:122–30, 1960.CrossRefGoogle Scholar
  10. Arnold, M., Geller, H., and Sasse, D.: Beitrag zur elektronenmikroskopischen Morphologie der menschlichen Plazenta. Arch. Gynäkol. 196:238–253, 1961.PubMedCrossRefGoogle Scholar
  11. Aufderheide, E., and Ekblom, P.: Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J. Cell Biol. 107:2341 – 2349, 1988.PubMedCrossRefGoogle Scholar
  12. Baker, B.L., Hook, S.J., and Severinghaus, A.E.: The cytological structure of the human chorionic villus and decidua parietalis. Am. J. Anat. 74:291–325, 1944.CrossRefGoogle Scholar
  13. Bargmann, W., and Knoop, A.: Elektronenmikroskopische Untersuchungen an Plazentazotten des Menschen. Bemerkungen zum Synzytiumproblem. Z. Zellforsch. 50:472–493, 1959.PubMedCrossRefGoogle Scholar
  14. Beck, T., Schweikhart, G., and Stolz, E.: Immunohisto-chemical location of hPL, SP1 and ß-hCG in normal placentas of varying gestational age. Arch. Gynecol. 239:63–74, 1986.PubMedCrossRefGoogle Scholar
  15. Becker, V. and Bleyl, U.: Placentarzotte bei Schwanger-schaftstoxicose und fetaler Erythroblastose im fluor-escenzmikroskopischen Bilde. Virchows Arch. [Pathol. Anat.] 334:516–527, 1961.CrossRefGoogle Scholar
  16. Becker, V., and Seifert, K.: Die Ultrastruktur der Kapillarwand in der menschlichen Placenta zur Zeit der Schwangerschaftsmitte. Z. Zellforsch. 65:380–396, 1965.PubMedCrossRefGoogle Scholar
  17. Beham, A., Denk, H., and Desoye, G.: The distribution of intermediate filament proteins, actin and desmo-plakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9:479–492, 1988.PubMedCrossRefGoogle Scholar
  18. Bierings, M.B.: Placental iron uptake and its regulation. Thesis, University of Rotterdam, 1989.Google Scholar
  19. Boime, I., Otani, T., Otani, F., Daniels-McQueen, S., and Bo, M.: Factors regulating peptide hormone biosynthesis in human placenta. In, Abstracts of the 11th Rochester Trophoblast Conference, Rochester, N.Y., 1988, p. 1.Google Scholar
  20. Borst, R., Kussaether, E., and Schuhmann, R.: Ultrastrukturelle Untersuchungen zur Verteilung der alkalischen Phosphatase im Placenton (maternofetale Strömungseinheit) der menschlichen Placenta. Arch. Gynäkol. 215:409–415, 1973.PubMedCrossRefGoogle Scholar
  21. Boyd, J.D., and Hamilton, W.J.: Electron microscopic observations on the cytotrophoblast contribution to the syncytium in the human placenta. J. Anat. 100: 535–548, 1966.PubMedGoogle Scholar
  22. Boyd, J.D., and Hamilton, W.J.: Development and structure of the human placenta from the end of the 3rd month of gestation. J. Obstet. Gynaecol. Br. Com-monw. 74:161–226, 1967.CrossRefGoogle Scholar
  23. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heffer & Sons, Cambridge, 1970.Google Scholar
  24. Boyd, J.D., Boyd, C.A.R., and Hamilton, W.J.: Observations on the vacuolar structure of the human syncytiotrophoblast. Z. Zeilforsch. 88:57–79, 1968a.CrossRefGoogle Scholar
  25. Boyd, J.D., Hamilton, W.J., and Boyd, C.A.R.: The surface of the syncytium of the human chorionic villus. J. Anat. 102:553–563, 1968b.PubMedGoogle Scholar
  26. Bradbury, S., Billington, W.D., Kirby, D.R.S., and Williams, E.A.: Surface mucin of human trophoblast. Am. J. Obstet. Gynecol. 104:416–418, 1969.PubMedGoogle Scholar
  27. Bradbury, S., Billington, W.D., Kirby, D.R.S., and Williams, E.A.: Histochemical characterization of the surface mucoprotein of normal and abnormal human trophoblast. Histochem. J. 2:263–274, 1970.PubMedCrossRefGoogle Scholar
  28. Bray, B.A.: Presence of fibronectin in basement membranes and acidic structural glycoproteins from human placenta and lung. Ann. N.Y Acad. Sci. 312:142–150, 1978.PubMedCrossRefGoogle Scholar
  29. Bremer, J.L.: The interrelations of the mesonephros, kidney and placenta in different classes of mammals. Am. J. Anat. 19:179–209, 1916.CrossRefGoogle Scholar
  30. Brown, P.J., and Johnson, P.M.: Isolation of a transferrin receptor structure from sodium deoxycholate-solubilized human placental syncytiotrophoblast plasma. Placenta 2:1–10, 1981.PubMedCrossRefGoogle Scholar
  31. Bryant-Greenwood, G.D., Rees, M.C.P., and Turnbull, A.C.: Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J. Endocrinol. 114: 491–496, 1987.PubMedCrossRefGoogle Scholar
  32. Bundgaard, M.: Transport pathways in capillaries —in search of pores. Annu. Rev. Physiol. 42:325–336, 1980.PubMedCrossRefGoogle Scholar
  33. Burgos, M.H., and Rodriguez, E.M.: Specialized zones in the trophoblast of the human term placenta. Am. J. Obstet. Gynecol. 96:342–356, 1966.PubMedGoogle Scholar
  34. Burton, G.J.: Intervillous connections in the mature human placenta: Instances of syncytial fusion or section artifacts? J. Anat. 145:13–23, 1986a.PubMedGoogle Scholar
  35. Burton, G.J.: Scanning electron microscopy of intervillous connections in the mature human placenta. J. Anat. 147:245–254, 1986b.PubMedGoogle Scholar
  36. Burton, G.J.: The fine structure of the human placental villus as revealed by scanning electron microscopy. Scan. Electron Microsc. 1:1811–1828, 1987.Google Scholar
  37. Cantle, S.J., Kaufmann, P., Luckhardt, M., and Schweikhart, G.: Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8:221–2234, 1987.PubMedCrossRefGoogle Scholar
  38. Carter, J.E.: The ultrastructure of the human trophoblast. In, Proceedings of the 2nd Rochester Trophoblast Conference, C.J. Lund, and H.A. Thiede, eds. 1963.Google Scholar
  39. Carter, J.E.: Morphologic evidence of syncytial formation from the cytotrophoblastic cells. Obstet. Gynecol. 23:647–656, 1964.PubMedGoogle Scholar
  40. Castellucci, M., and Kaufmann, P.: A three-dimensional study of the normal human placental villous core: II. Stromal architecture. Placenta 3:269–285, 1982a.PubMedCrossRefGoogle Scholar
  41. Castellucci, M., and Kaufmann, P.: Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl. Anat. 22:40–45, 1982b.PubMedGoogle Scholar
  42. Castellucci, M., Zaccheo, D., and Pescetto, G.: A three-dimensional study of the normal placental villous core. I. The Hofbauer cells. Cell Tissue Res. 210: 235–247, 1980.PubMedCrossRefGoogle Scholar
  43. Castellucci, M., Celona, A., Bartels, H., Steininger, B., Benedetto, V., and Kaufmann, P.: Mitosis of the Hofbauer cell: possible implications for a fetal macrophage. Placenta 8:65–76, 1987.PubMedCrossRefGoogle Scholar
  44. Castellucci, M., Kaufmann, P., and Bischof, P.: Extracellular matrix influences hormone and placental protein production by human chorionic villi. In, Abstracts of the 11th Rochester Trophoblast Conference, Rochester, N.Y., p. 49, 1988.Google Scholar
  45. Castellucci, M., Scheper, M., Scheffen, I., Celona, A., and Kaufmann, P.: The development of the human placental villous tree. Anat. Embryol. (Berl.) 181: 117–128, 1989.Google Scholar
  46. Castellucci, M., Classen-Linke, I., Kaufmann, P., Zardi, L., and Chiquet-Ehrismann, R.: Expression von Tenascin in der menschlichen Plazenta. Poster, 85th Annual Meeting of the Anatomische Gesellschaft, Munich, 1990.Google Scholar
  47. Chegini, N., and Rao, C.V.: Epidermal growth factor binding to human amnion, chorion, decidua, and placenta from mid- and term pregnancy: quantitative light microscopic autoradiographic studies. J. Clin. Endocrinol. Metab. 61:529–535, 1985.PubMedCrossRefGoogle Scholar
  48. Chen, C.-E., Kurachi, H., Fujita, Y., Terakawa, N., Miyake, A., and Tanizawa, O.: Changes in epidermal growth factor receptor and its messenger ribonucleic acid levels in human placenta and isolated trophoblast cells during pregnancy. J. Clin. Endocrinol. Metab. 67:1171–1177, 1988.PubMedCrossRefGoogle Scholar
  49. Clavero-Nunez, J.A., and Botellallusia, J.: Measurement of the villus surface in normal and pathologic placentas. Am. J. Obstet. Gynecol. 86:234–240, 1961.Google Scholar
  50. Clough, G., and Michel, C.: The role of vesicles in the transport of ferritin through frog endothelium. J. Physiol. (Lond.) 315:127–142, 1981.Google Scholar
  51. Contractor, S.F.: Lysosomes in human placenta. Nature 223:1274–1275, 1969.PubMedCrossRefGoogle Scholar
  52. Contractor, S.F., Banks, R.W., Jones, C.J.P., and Fox, H.: A possible role for placental lysosomes in the formation of villous syncytiotrophoblast. Cell Tissue Res. 178:411–419, 1977.PubMedCrossRefGoogle Scholar
  53. Crisp, T.M., Dessouky, D.A., and Denys, F.R.: The fine structure of the human corpus luteum of early pregnancy and during the progestational phase of the menstrual cycle. Am. J. Anat. 127:37–70, 1970.PubMedCrossRefGoogle Scholar
  54. Daughaday, W.H., Mariz, I.K., and Trivedi, B.: A preferential binding site for insulin-like growth factor II in human and rat placental membranes. J. Clin. Endocrinol. Metab. 53:282–288, 1981.PubMedCrossRefGoogle Scholar
  55. Davidoff, M., and Schiebler, T.H.: Über den Feinbau der Meerschweinchenplacenta während der Entwicklung. Z. Anat. Entwicklungsgesetz 130:234–254, 1970.CrossRefGoogle Scholar
  56. De Ikonicoff, L.K., and Cedard, L.: Localization of human chorionic gonadotropic and somatomammo-tropic hormones by the peroxidase immunoenzymo-logic method in villi and amniotic epithelium of human placenta (from six weeks to term). Am. J. Obstet. Gynecol. 116:1124–1132, 1973.PubMedGoogle Scholar
  57. Demir, R., Kaufmann, P., Castellucci, M., Erbengi, T., and Kotowski, A.: Fetal vasculogenesis and angiogen-esis in human placental villi. Acta Anat. (Basel) 136:190–203, 1989.CrossRefGoogle Scholar
  58. Dempsey, E.W.: The development of capillaries in the villi of early human placentas. Am. J. Anat. 134: 221–238, 1972.PubMedCrossRefGoogle Scholar
  59. Dempsey, E.W., and Luse, S.A.: Regional specializations in the syncytial trophoblast of early human placentas. J. Anat. 108:545–561, 1971.PubMedGoogle Scholar
  60. Dempsey, E.W., and Zergollern, L.: Zonal regions of the human placenta barrier. Anat. Rec. 163:177, 1969.Google Scholar
  61. Dorgan, W.J., and Schultz, R.L.: An in vitro study of programmed death in rat placental giant cells. J. Exp. Zool. 178:497–512, 1971.PubMedCrossRefGoogle Scholar
  62. Dreskin, R.B., Spicer, S.S., and Greene, W.B.: Ultra-structural localization of chorionic gonadotropin in human term placenta. J. Histochem. Cytochem. 18: 862–874, 1970.PubMedCrossRefGoogle Scholar
  63. Duance, V.C., and Bailey, A.J.: Structure of the trophoblast basement membrane. In, Biology of Trophoblast, Y.W. Loke, and A. Whyte, eds. Elsevier, Amsterdam, 1983.Google Scholar
  64. Dujardin, M., Robyn, C., and Wilkin, P.: Mise en evidence immuno-histoenzymologique de l’hormone chorionique somatomammotrope (hCS) au niveau des divers constituants cellulaires du placenta humain normal. Biol. Cell 30:151–154, 1977.Google Scholar
  65. Enders, A.C.: A comparative study of the fine structure in several hemochorial placentas. Am. J. Anat. 116: 29–67, 1965.PubMedCrossRefGoogle Scholar
  66. Enders, A.C., and King, B.F.: The cytology of Hofbauer cells. Anat. Rec. 167:231–252, 1970.PubMedCrossRefGoogle Scholar
  67. Feller, A.C., Schneider, H., Schmidt, D., and Parwaresch, M.R.: Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta 6:405–415, 1985.PubMedCrossRefGoogle Scholar
  68. Firth, J.A., Farr, A., and Bauman, K.: The role of gap junctions in trophoblastic cell fusion in the guinea-pig placenta. Cell Tissue Res. 205:311–318, 1980.PubMedCrossRefGoogle Scholar
  69. Firth, J.A., Bauman, K., and Sibley, C.P.: Permeability pathways in fetal placental capillaries. Trophoblast Res. 3:163–177, 1988.Google Scholar
  70. Fisher, S.J., and Laine, R.A.: High alpha-amylase activity in the syncytiotrophoblastic cells of first-trimester human placentas. J. Cell Biochem. 22: 47–54, 1983.PubMedCrossRefGoogle Scholar
  71. Fisher, S.J., Leitch, M.S., and Laine, A.: External labelling of glycoproteins from first-trimester human placental microvilli. Biochem. J. 221:821–828, 1984.PubMedGoogle Scholar
  72. Foidart, J.M., Berman, J., Paglia, L., and Rennard, S.: Synthesis of collagen, fibronectin and laminin by ARL6 cells: an epithelial cell line from liver. Fed. Proc. 38:800, 1979.Google Scholar
  73. Folkman, J., and Haudenschild, C.: Angiogenesis in vitro. Nature 288:551–556, 1980.PubMedCrossRefGoogle Scholar
  74. Fox, H.: The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Com-monw. 71:885–893, 1964f.CrossRefGoogle Scholar
  75. Fox, H.: The significance of villous syncytial knots in the human placenta. J. Obstet. Gynaecol. Br. Com-monw. 72:347–355, 1965.CrossRefGoogle Scholar
  76. Fox, H.: Effect of hypoxia on trophoblast in organ culture. Am. J. Obstet. Gynecol. 107:1058–1064, 1970.PubMedGoogle Scholar
  77. Fox, H.: Pathology of the Placenta. Saunders, London, 1978.Google Scholar
  78. Fox, H., and Blanco, A.: Scanning electron microscopy of the human placenta in normal and abnormal pregnancies. Eur. J. Obstet. Gynecol. 4:45–50, 1974.CrossRefGoogle Scholar
  79. Frauli, M., and Ludwig, H.: Identification of human chorionic gonadotropin (hCG) secreting cells and other cell types using antibody to hCG and a new monoclonal antibody (mABlu-5) in cultures of human placental villi. Arch. Gynecol. Obstet. 241:97–110, 1987.PubMedCrossRefGoogle Scholar
  80. Freese, U.E.: The fetal-maternal circulation of the placenta. I. Histomorphologic, plastoid injection, and x-ray cinematographic studies on human placentas. Am. J. Obstet. Gynecol. 94:354–360, 1966.PubMedGoogle Scholar
  81. Fujimoto, S., Hamasaki, K., Ueda, H., and Kagawa, H.: Immunoelectron microscope observations on secretion of human placental lactogen (hPL) in the human chorionic villi. Anat. Rec. 216:68–72, 1986.PubMedCrossRefGoogle Scholar
  82. Gabius, H.-J., Debbage, P.L., Engelhardt, R., Osmers, R., and Lange, W.: Identification of endogenous sugar-binding proteins (lectins) in human placenta by histochemical localization and biochemical characterization. Eur. J. Cell Biol. 44:265–272, 1987.PubMedGoogle Scholar
  83. Galbraith, G.M.P., Galbraith, R.M., Temple, A., and Faulk, W.P.: Demonstration of transferrin receptors on human placental trophoblast. Blood 55:240–242, 1980.PubMedGoogle Scholar
  84. Galton, M.: DNA content of placental nuclei. J. Cell Biol. 13:183–191, 1962.PubMedCrossRefGoogle Scholar
  85. Gammal, E.B.: Syncytial channels in the villous trophoblast of the macaque. J. Anat. 141:181–191, 1985.PubMedGoogle Scholar
  86. Gaspard, U.J., Hustin, J., Reuter, A.M., Lambotte, R., and Franchimont, P.: Immunofluorescent localization of placental lactogen, chorionic gonadotrophin and its alpha and beta subunits in organ cultures of human placenta. Placenta 1:135–144, 1980.PubMedCrossRefGoogle Scholar
  87. Geier, G., Schuhmann, R., and Kraus, H.: Regional unterschiedliche Zeilproliferation innerhalb der Plazentone riefer menschlicher Plazenten: autoradiographische Untersuchungen. Arch. Gynäkol. 218: 31–37, 1975.PubMedCrossRefGoogle Scholar
  88. Geller, H.F.: Elektronenmikroskopische Befunde am Synzytium der menschlichen Plazenta. Geburtshilfe u. Frauenheilk. 22:1234–1237, 1962.Google Scholar
  89. Genbacev, O., Robyn, C., and Pantic, V.: Localization of chorionic gonadotropin in human term placenta on ultrathin sections with peroxidase-labeled antibody. J. Microsc. 15:399–402, 1972.Google Scholar
  90. Gerl, D., Eichhorn, H., Eichhorn, K.-H., and Franke, H.: Quantitative Messungen synzytialer Zellkernkonzentrationen der menschlichen Plazenta bei normalen und pathologischen Schwangerschaften. Zentralbl. Gynäkol. 95:263–266, 1973.PubMedGoogle Scholar
  91. Gey, G.O., Seegar, G.E., and Hellman, L.M.: The production of a gonadotrophic substance (prolan) by placental cells in tissue culture. Science 88:306–307, 1938.PubMedCrossRefGoogle Scholar
  92. Ghadially, F.N.: Ultrastructural Pathology of the Cell and Matrix: a Text and Atlas of Physiological and Pathological Alterations in the fine Structure of Cellular and Extracellular Components, 2nd ed., p. 750. Butterworth, London, 1982.Google Scholar
  93. Gillim, S.W., Christensen, A.K., and McLennan, Ch.E.: Fine structure of the human menstrual corpus luteum at its stage of maximum secretory activity. Am. J. Anat. 126:409–428, 1969.PubMedCrossRefGoogle Scholar
  94. Gosseye, S., and Fox, H.: An immunohistological comparison of the secretory capacity of villous and extra-villous trophoblast in the human placenta. Placenta 5:329–348, 1984.PubMedCrossRefGoogle Scholar
  95. Gossrau, R., Graf, R., Ruhnke, M., and Hanski, C.: Proteases in the human full-term placenta. Histochemistry 86:405–413, 1987.PubMedCrossRefGoogle Scholar
  96. Green, T. and Ford, H.C.: Human placental microvilli contain high-affinity binding sites for folate. Biochem. J. 218:75–80, 1984.PubMedGoogle Scholar
  97. Grillo, M.A.: Cytoplasmic inclusions resembling nucleoli in sympathetic neurones of adult rats. J. Cell Biol. 45:100–117, 1970.PubMedCrossRefGoogle Scholar
  98. Groeschel-Stewart, U.: Plazenta als endokrines Organ. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds. pp. 217–233. Thieme Verlag, Stuttgart, 1981.Google Scholar
  99. Hamanaka, N., Tanizawa, O., Hashimoto, T., Yoshinari, S., and Okudaira, Y.: Electron microscopic study on the localization of human chorionic gonadotropin (hCG) in the chorionic tissue by enzyme labeled antibody technique. J. Electron Microsc. 20:46–48, 1971.Google Scholar
  100. Hamilton, W.J. and Boyd, J.D.: Specializations of the syncytium of the human chorion. Br. Med. J. 1:1501–1506, 1966.PubMedCrossRefGoogle Scholar
  101. Hashimoto, M., Kosaka, M., Mori, Y., Komori, A., and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. I. J. Jpn. Obstet. Gynaecol. Soc. 7:44, 1960a.Google Scholar
  102. Hashimoto, M., Shimoyama, T., Hirasawa, T., Komori, A., Kawasaki, T., and Akashi, K.: Electron microscopic studies on the epithelium of the chorionic villi of the human placenta. II. J. Jpn. Obstet. Gynaecol. Soc. 7:122, 1960b.Google Scholar
  103. Hay, D.L.: Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br. J. Obstet. Gynaecol. 95:1268–1275, 1988.PubMedCrossRefGoogle Scholar
  104. Hedley, R., and Bradbury, M.B.W.: Transport of polar non-electrolytes across the intact and perfused guinea-pig placenta. Placenta 1:277–285, 1980.PubMedCrossRefGoogle Scholar
  105. Heinrich, D., Metz, J., Raviola, E., and Forssmann, W.G.: Ultrastructure of perfusion fixed fetal capillaries in the human placenta. Cell Tissue Res. 172: 157–169, 1976.PubMedCrossRefGoogle Scholar
  106. Heinrich, D., Weihe, E., Grüner, C., and Metz, J.: Vergleichende Morphologie der Placentakapillaren. Anat. Anz. 71:489–491, 1977.Google Scholar
  107. Heinrich, D., Aoki, A., and Metz, J.: Fetal capillary organization in different types of placenta. Trophoblast Res. 3:149–162, 1988.Google Scholar
  108. Hellman, L.M., and Hertig, A.T.: Pathological changes in the placenta associated with erythroblastosis of the fetus. Am. J. Pathol. 14:111–120, 1938.PubMedGoogle Scholar
  109. Hempel, E., and Geyer, G.: Submikroskopische Verteilung der alkalischen Phosphatase in der menschlichen Placenta. Acta Histochem. (Jena) 34:138–147, 1969.Google Scholar
  110. Herbst, R., and Multier, A.M.: Les microvillosites a la surface des villosites chorioniques du placenta humain. Gynecol. Obstet. 69:609–616, 1970.Google Scholar
  111. Herbst, R., Multier, A.M., and Hörmann, G.: Die menschlichen Plazentazotten des 2. Schwangerschafts-trimenon im elektronenoptischen Bild. Z. Geburtshilfe Gynäkol. 169:1–16, 1968.PubMedGoogle Scholar
  112. Herbst, R., Multier, A.M., and Hörmann, G.: Elektronenoptische Untersuchungen an menschlichen Placen-tazotten. Zentralbl. Gynäkol. 91:465–475, 1969.PubMedGoogle Scholar
  113. Hertig, A.T.: Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib. Embryol. Carnegie Inst. 25:37–81, 1935.Google Scholar
  114. Hey, A., and Roeckelein, G.: Die sog. Endothelvakuolen der Plazentageföße — Physiologie oder Krankheit? Pathologe 10:66–67, 1989.PubMedGoogle Scholar
  115. Hörmann, G.: Die Reifung der menschlichen Chorionzotte im Lichte ökonomischer Zweckmäßigkeit. Zen-trablbl. Gynäkol. 70:625–631, 1948.Google Scholar
  116. Hörmann, G.: Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta. Arch. Gynäkol. 184:109–123, 1953.CrossRefGoogle Scholar
  117. Hörmann, G., Herbst, R., and Ulimann, G.: Die Transformation des Zytotrophoblasten in den Synzytiotro-phoblasten. Z. Geburtshilfe Gynäkol. 171:171–182, 1969.Google Scholar
  118. Hoffman, L.H., and Di Pietro, D.L.: Subcellular localization of human placental acid phosphatases. Am. J. Obstet. Gynecol. 114:1087–1096, 1972.PubMedGoogle Scholar
  119. Hoshina, M., Boothby, M., and Boime, I.: Cytological localization of chorionic gonadotropin and placental lactogen mRNAs during development of the human placenta. J. Cell Biol. 93:190–198, 1982.PubMedCrossRefGoogle Scholar
  120. Hoshina, M., Hussa, R., Patillo, R., and Boime I.: Cytological distribution of chorionic gonadotropin subunit and placental lactogen messenger RNA in neoplasms derived from human placenta. J. Cell Biol. 97:1200–1206, 1983.PubMedCrossRefGoogle Scholar
  121. Hoshina, M., Boime, I., and Mochizuki, M.: Cytological localization of hPL and hCG mRNA in chorionic tissue using in situ hybridization. Acta Obstet. Gynaecol. Jpn. 36:397–404, 1984.Google Scholar
  122. Hulstaert, C.E., Torringa, J.L., Koudstaal, J., Hardonk, M.J., and Molenaar, I.: The characteristic distribution of alkaline phosphatase in the full-term human placenta. Gynecol. Invest. 4:24–30, 1973.CrossRefGoogle Scholar
  123. Ikawa, A.: Observations on the epithelium of human chorionic villi with the electron microscope. J. Jpn. Obstet. Gynaecol. Soc. 6:219, 1959.Google Scholar
  124. Iklé, F.A.: Trophoblastzellen im strömenden Blut. Schweiz. Med. Wochenschr. 91:934–945, 1961.Google Scholar
  125. Jeffcoate, T.N. A., and Scott, J.S.: Some observations on the placental factor in pregnancy toxemia. Am. J. Obstet. Gynecol. 77:475–489, 1959.PubMedGoogle Scholar
  126. Jemmerson, R., Klier, E.G., and Fishman, W.H.: Clustered distribution of human placental alkaline phosphatase on the surface of both placental and cancer cells. J. Histochem. Cytochem. 33:1227 – 1234, 1985.PubMedCrossRefGoogle Scholar
  127. Jimenez, E., Vogel, M., Arabin, B., Wagner, G., and Mirsalim, P.: Correlation of ultrasonographic measurement of the utero-placental and fetal blood flow with the morphological diagnosis of placental function. Trophoblast Res. 3:325–334, 1988.Google Scholar
  128. Johnson, P.M., and Brown, P.J.: The IgG and transferrin receptors of the human syncytiotrophoblast microvillous plasma membrane. Am. J. Reprod. Immunol. 1:4–9, 1980.PubMedCrossRefGoogle Scholar
  129. Jones, C.J.P., and Fox, H.: Syncytial knots and intervillous bridges in the human placenta: an ultrastructural study. J. Anat. 124:275–286, 1977.PubMedGoogle Scholar
  130. Kameya, T., Watanabe, K., Kobayashi, T., and Muko-jima, T.: Enzyme-and immuno-histochemical localization of human placental alkaline phosphatase. Acta Histochem. Cytochem. 6:124–136, 1973.Google Scholar
  131. Kao, L.-G., Caltabiano, S., Wu, S., Strauss, III J.F., and Kliman, H.J.: The human villous cytotrophoblast: interactions with extracellular matrix proteins, endocrine function, and cytoplasmic differentiation in the absence of syncytium formation. Dev. Biol. 130: 693–702, 1988.PubMedCrossRefGoogle Scholar
  132. Kaufmann, P.: Über polypenartige Vorwölbungen an Zell- und Syncytiumoberflächen in reifen menschlichen Plazenten. Z. Zellforsch. 102:266–272, 1969.PubMedCrossRefGoogle Scholar
  133. Kaufmann, P.: Untersuchungen über die Langhanszellen in der menschlichen Placenta. Z. Zellforsch. 128: 283–302, 1972.PubMedCrossRefGoogle Scholar
  134. Kaufmann, P.: Über die Bedeutung von Plasmapro-trusionen an reifenden und alternden Zellen. Anat. Anz. 69:307–312, 1975a.Google Scholar
  135. Kaufmann, P.: Experiments on infarct genesis caused by blockage of carbohydrate metabolism in guinea pig placenta. Virchows Arch. [Pathol. Anat.] 368:11–21, 1975b.CrossRefGoogle Scholar
  136. Kaufmann, P.: Vergleichend-anatomische und funktionelle Aspekte des Placenta-Baues. Funkt. Biol. Med. 2:71–79, 1983.Google Scholar
  137. Kaufmann, P.: Influence of ischemia and artificial perfusion on placental ultrastructure and morphometry. Contrib. Gynecol. Obstet. 13:18–26, 1985.PubMedGoogle Scholar
  138. Kaufmann, P. and Miller, R.K. (eds.): Placental vascularization and blood flow: basic research and clinical applications. In, Trophoblast Research 3. Plenum, New York, 1988.Google Scholar
  139. Kaufmann, P., and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazot-ten. I. Reifungs- und Alterungsvorgänge am Trophoblasten. Histochemistry 29:65–82, 1972.PubMedCrossRefGoogle Scholar
  140. Kaufmann, P., and Stark, I: Semidünnschnitt-cyto-chemische und immunautoradiographische Befunde zum Hormonstoffwechsel der reifen menschlichen Placenta. Anat. Anz. 67:245–249, 1973.Google Scholar
  141. Kaufmann, P., and Stegner, H.E.: Über die funktionelle Differenzierung des Zottensyncytiums in der menschlichen Placenta. Z. Zellforsch. 135:361–382, 1972.PubMedCrossRefGoogle Scholar
  142. Kaufmann, P., Thorn, W., and Jenke, B.: Die Morphologie der Meerschweinchenplacenta nach Monojoda-cetat und Fluorid-Vergiftung. Arch. Gynäkol. 216: 185–203, 1974a.PubMedCrossRefGoogle Scholar
  143. Kaufmann, P., Schiebler, Th.H., Ciobotaru, G., and Stark, I: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. II. Zur Gliederung des Syncytiotrophoblasten. Histochemistry 40: 191–207, 1974b.PubMedCrossRefGoogle Scholar
  144. Kaufmann, P., Gentzen, D.M., and Davidoff, M.: Die Ultrastruktur von Langhanszellen in pathologischen menschlichen Placemen. Arch. Gynäkol. 22:319–332, 1977a.CrossRefGoogle Scholar
  145. Kaufmann, P., Stark, I., and Stegner, H.-E.: The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177: 105–121, 1977b.PubMedCrossRefGoogle Scholar
  146. Kaufmann, P., Sen, D.K., and Schweikhart, G.: Classification of human placental villi. Cell Tissue Res. 200:409–423, 1979.PubMedCrossRefGoogle Scholar
  147. Kaufmann, P., Schroeder, H., and Leichtweiss, H.-P.: Fluid shift across the placenta. II. Fetomaternal transfer of horseradish peroxidase in the guinea pig. Placenta 3:339–348, 1982.PubMedCrossRefGoogle Scholar
  148. Kaufmann, P., Nagl, W., and Fuhrmann, B.: Die funktionelle Bedeutung der Langhanszellen der menschlichen Placenta. Anat. Anz. 77:435–436, 1983.Google Scholar
  149. Kaufmann, P., Luckhardt, M., Schweikhart, G., and Cantle, S.J.: Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8:235–247, 1987a.PubMedCrossRefGoogle Scholar
  150. Kaufmann, P., Schroeder, H., Leichtweiss, H.-P., and Winterhager, E.: Are there membrane-lined channels through the trophoblast? A study with lanthanum hydroxide. Trophoblast Res. 2:557–571, 1987b.Google Scholar
  151. Kaufmann, P., Firth, J.A., Sibley, C.P., and Schroeder, H.: Feto-maternal protein permeability of the placenta-tracer studies using various haeme proteins and lanthanum hydroxide. Gegenbaurs Morphol. Jahrb. 135:305, 1989.Google Scholar
  152. Kefalides, N.A., Alper, R., and Clark, C.C.: Biochemistry and metabolism of basement membranes. Int. Rev. Cytoi. 61:167–228, 1979.CrossRefGoogle Scholar
  153. Kelley, L.K., King, B.F., Johnson, L.W., and Smith, C.H.: Protein composition and structure of human placental microvillous membrane. Exp. Cell Res. 123: 167–176, 1979.PubMedCrossRefGoogle Scholar
  154. Kemnitz, P.: Die Morphogenese des Zottentropho-blasten der menschlichen Plazenta—Ein Beitrag zum Synzytiumproblem. Zentralbl. Allg. Pathol. 113:71–76, 1970.PubMedGoogle Scholar
  155. Khodr, G.S., and Siler-Khodr, T.M.: Localization of luteinizing hormone releasing factor (LRF) in the human placenta. Fertil. Steril. 29:523–526, 1978.PubMedGoogle Scholar
  156. Khong, T.Y., Lane, E.B., and Robertson, W.B.: An immu-nocytochemical study of fetal cells at the maternal-placental interface using monoclonal antibodies to keratins, vimentin and desmin. Cell Tissue Res. 246:189–195, 1986.PubMedCrossRefGoogle Scholar
  157. Kim, C.K., and Benirschke, K.: Autoradiographic study of the “X cells” in the human placenta. Am. J. Obstet. Gynecol. 109:96–102, 1971.PubMedGoogle Scholar
  158. Kim, C.K., Naftolin, F., and Benirschke, K.: Immuno-histochemical studies of the “X cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Am. J. Obstet. Gynecol. 111:672–676, 1971.PubMedGoogle Scholar
  159. King, B.F.: Localization of transferrin on the surface of the human placenta by electron microscopic immuno-cytochemistry. Anat. Rec. 186:151–159, 1976.PubMedCrossRefGoogle Scholar
  160. King, B.F.: The distribution and mobility of anionic sites on the surface of human placental syncytial trophoblast. Anat. Rec. 199:15–22, 1981.PubMedCrossRefGoogle Scholar
  161. King, B.F.: The organization of actin filaments in human placental villi. J. Ultrastruct. Res. 85:320–328, 1983.PubMedCrossRefGoogle Scholar
  162. King, B.F.: Ultrastructural differentiation of stromal and vascular components in early macaque placental villi. Am. J. Anat. 178:30–44, 1987.PubMedCrossRefGoogle Scholar
  163. King, B.F., and Menton, D.N.: Scanning electron microscopy of human placental villi from early and late in gestation. Am. J. Obstet. Gynecol. 122:824–828, 1975.PubMedGoogle Scholar
  164. Kliman, H.J., Feinman, M.A., and Strauss, III, J.F.: Differentiation of human cytotrophoblasts into syn-cytiotrophoblasts in culture. Trophoblast Res. 2:407–421, 1987.Google Scholar
  165. Kliman, H.J., Nestler, J.E., Sermasi, E., Sanger, J.M., and Strauss, J.F. Ill: Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582, 1986.PubMedCrossRefGoogle Scholar
  166. Knoth, M.: Ultrastructure of chorionic villi from a four-somite human embryo. J. Ultrastruct. Res. 25:423–440, 1968.PubMedCrossRefGoogle Scholar
  167. Kobayashi, S.: Ferritin labeling in the fixed muscle capillary: a doubt on the tracer experiments as the basis for the vesicular transport theory. Arch. Histol. Jpn. 32: 81–86, 1970.PubMedCrossRefGoogle Scholar
  168. Kubli, F., and Budliger, H.: Beitrag zur Morphologie der insuffizienten Plazenta. Geburtshilfe u. Frauenheilk. 23:37–43, 1963.Google Scholar
  169. Kuestermann, W.: Über “Proliferationsknoten” und “Syncytialknoten” der menschlichen Placenta. Anat. Anz. 150:144–157, 1981.Google Scholar
  170. Kurman, R.J., Young, R.H., Norris, H.J., Main, C.S., Lawrence, W.D., and Scully, R.E.: Immunocyto-chemical localization of placental lactogen and chorionic gonadotropin in the normal placenta and trophoblastic tumors, with emphasis on intermediate trophoblast and the placental site trophoblastic tumor. Int. J. Gynecol. Pathol. 3:101–121, 1984.PubMedCrossRefGoogle Scholar
  171. Laatikainen, T., Saijonmaa, O., Salminen, K., and Wahlstroem, T.: Localization and concentrations of beta-endorphin and beta-lipotrophin in human placenta. Placenta 8:381–387, 1987.PubMedCrossRefGoogle Scholar
  172. Lafond, J., Auger, D., Fortier, J., and Brunette, M.G.: Parathyroid hormone receptor in human placental syncytiotrophoblast brush border and basal plasma membranes. Endocrinology 123:2834–2840, 1988.PubMedCrossRefGoogle Scholar
  173. Langhans, T.: Zur Kenntnis der menschlichen Placenta. Arch. Gynäkol. 1:317–334, 1870.CrossRefGoogle Scholar
  174. Leach, L., Eaton, B.M., Firth, J.A., and Contractor, S.F.: Immunogold localisation of endogenous immu-noglobulin-G in ultrathin frozen sections of the human placenta. Cell Tissue Res. 257:603–607, 1989.PubMedCrossRefGoogle Scholar
  175. Leibl, W., Kerjaschki, D., and Hrandner, H.: Mikrovillusfreie Areale an Chorionzotten menschlicher Placen-ten. Gegenbaurs Morphol. Jahrb. 121:26–28, 1975.Google Scholar
  176. Lemtis, H.: Über die Architektonik des Zottengefößap-parates der menschlichen Plazenta. Anat. Anz. 102: 106–133, 1955.PubMedGoogle Scholar
  177. Lemtis, H.: Physiologie der Placenta. Bibl. Gynaecol. (Basel) 54:1–52, 1970.Google Scholar
  178. Liebhaber, S.A., Urbanek, M., Ray, J., Ruan, R.S., and Cooke, N.E.: Characterization and histologic localization of human growth hormone-variant gene expression in the placenta. J. Clin. Invest. 83:1985–1991, 1989.PubMedCrossRefGoogle Scholar
  179. Liebhart, M.: Polysaccharide surface coat (glycocalix) of human placental villi. Pathol. Eur. 9:3–10, 1974.PubMedGoogle Scholar
  180. Lister, U.M.: Ultrastructure of the early human placenta. J. Obstet. Gynaecol. Brit. Commonw. 71:21 – 32, 1964.CrossRefGoogle Scholar
  181. Lister, U.M.: The localization of placental enzymes with the electron microscope. J. Obstet. Gynaecol. Brit. Commonw. 74:34–49, 1967.CrossRefGoogle Scholar
  182. Luckett, W.P.: The fine structure of the placental villi of the rhesus monkey (Macaca mulatta). Anat. Rec. 167: 141–164, 1970.CrossRefGoogle Scholar
  183. Luckett, W.P.: Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152:59–97, 1978.PubMedCrossRefGoogle Scholar
  184. Ludwig, K.S.: Zur vergleichenden Histologie des Allan-tochorion. Rev. Suisse Zool. 75:819–831, 1968.PubMedGoogle Scholar
  185. Ludwig, K.S.: Vergleichende Anatomie der Plazenta. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., pp. 1–12. Thieme Verlag Stuttgart, 1981.Google Scholar
  186. Malassine, A., Goldstein, S., Alsat, E., Merger, C., and Cedard, L.: Ultrastructural localization of low density lipoprotein bindings site on the surface of the syncytial microvillous membranes of the human placenta. IRCS Med. Sci. 12:166–167, 1984.Google Scholar
  187. Malassine, A., Besse, C., Roche, A., Alsat, E., Rebourcet, R., Mondon, F., and Cedard, L.: Ultrastructural visualization of the internalization of low density lipoprotein by human placental cells. Histochemistry 87: 457–464, 1987.PubMedCrossRefGoogle Scholar
  188. Martin, B.J., and Spicer, S.S.: Multivesicular bodies and related structures of the syncytiotrophoblast of human term placenta. Anat. Rec. 175:15–36, 1973a.PubMedCrossRefGoogle Scholar
  189. Martin, B.J. and Spicer, S.S.: Ultrastructural features of cellular maturation and aging in human trophoblast. J. Ultrastruct. Res. 43:133–149, 1973b.PubMedCrossRefGoogle Scholar
  190. Martin, B.J., Spicer, S.S., and Smythe, N.M.: Cyto-chemical studies of the maternal surface of the syncytiotrophoblast of human early and term placenta. Anat. Rec. 178:769–786, 1974.PubMedCrossRefGoogle Scholar
  191. Martinoli, C., Castellucci, M., Zaccheo, D., and Kaufmann, P.: Scanning electron microscopy of stromal cells of human placental villi throughout pregnancy. Cell Tissue Res. 235:647–655, 1984.PubMedCrossRefGoogle Scholar
  192. Maruo, T., and Mochizuki, M.: Immunohistochemical localization of epidermal growth factor receptor and myc oncogene product in human placenta: implication for trophoblast proliferation and differentiation. Am. J. Obstet. Gynecol. 156:721–727, 1987.PubMedGoogle Scholar
  193. Maruo, T., Matsuo, H., Oishi, T., Hayashi, M., Nishino, R., and Mochizuki, M.: Induction of differentiated trophoblast function by epidermal growth factor: relation of immunohistochemically detected cellular epidermal growth factor receptor levels. J. Clin. Endocrinol. Metab. 64:744–750, 1987.PubMedCrossRefGoogle Scholar
  194. Matsubara, S., Tamada, T., Kurahashi, K., and Saito, T.: Ultracytochemical localizations of adenosine nucleotidase activities in the human term placenta, with special reference to 5’-nucleotidase activity. Acta Histochem. Cytochem. 20:409–419, 1987a.Google Scholar
  195. Matsubara, S., Tamada, T., and Saito, T.: Cytochemical study of the electronmicroscopical localization of Ca ATPase activity in the human trophoblast. Acta Obstet. Gynaecol. Jpn. 39:1080–1086, 1987b.Google Scholar
  196. Matsubara, S., Tamada, T., and Saito, T.: Ultracytochemical localizations of alkaline phosphatase and acid phosphatase activities in the human term placenta. Acta Histochem. Cytochem. 20:283–294, 1987c.Google Scholar
  197. Matsubara, S., Tamada, T., and Saito, T.: Ultracytochemical localizations of adenylate cyclase, guanylate cyclase and cyclic 3’, 5’-nucleotide phosphodiesterase activity on the trophoblast in the human placenta. Histochemistry 87:505–509, 1987d.PubMedCrossRefGoogle Scholar
  198. Mayer, M., Panigel, M., and Tozum, R.: Observations sur l’aspect radiologique de la vascularisation fetale du placenta humain isole mainten en survie par perfusion de liquides physiologiques. Gynecol. Obstet. (Paris) 58:391–397, 1959.Google Scholar
  199. Mayhew, T.M.: The problem of ambiguous profiles of microvilli between apposed cell surfaces: a stereologi-cal solution. J. Microsc. 139:327–330, 1985.PubMedCrossRefGoogle Scholar
  200. Merrill, J.A.: Common pathological changes of the placenta. Clin. Obstet. Gynecol. 6:96–109, 1963.PubMedCrossRefGoogle Scholar
  201. Metz, J., Heinrich, D., and Forssmann, W.G.: Ultra-structure of the labyrinth in the rat full term placenta. Anat. Embryol. (Berl.) 149:123–148, 1976.CrossRefGoogle Scholar
  202. Metz, J., Weihe, E., and Heinrich, D.: Intercellular junctions in the full term human placenta. I. Syncytiotrophoblast ic layer. Anat. Embryol. (Berl.) 158:41–50, 1979.CrossRefGoogle Scholar
  203. Midgley, A.R., and Pierce, G.B.: Immunohistochemical localization of human chorionic gonadotropin. J. Exp. Med. 115:289–297, 1962.PubMedCrossRefGoogle Scholar
  204. Mikolajczak, J., Ruhrberg, A., Fetzer, M., Kaufmann, P., and Goecke, C.: Irreguläre Zottenreifung bei Frühge-burtlichkeit und Übertragung, und ihre Darstellbarkeit im Ultraschall. Gynäkol. Rdsch. 27:145–146, 1987.Google Scholar
  205. Miller, R.K., and Thiede, H.A., eds.: Fetal nutrition, metabolism, and immunology: the role of the placenta. Trophoblast Res. 1:1–387, 1984.Google Scholar
  206. Moe, N.: Mitotic activity in the syncytiotrophoblast of the human chorionic villi. Am. J. Obstet. Gynecol. 110:431, 1971.PubMedGoogle Scholar
  207. Morrish, D.W., Bhardwaj, D., Dabbagh, L.K., Marusyk, H., and Siy, O.: Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta. J. Clinical Endocrinol. Metab. 65:1282–1290, 1987.CrossRefGoogle Scholar
  208. Morrish, D.W., Marusyk, H., and Bhardwaj, D.: Ultra-structural localization of human placental lactogen in distinctive granules in human term placenta: comparison with granules containing human chorionic gonadotropin. J. Histochem. Cytochem. 36:193–197, 1988.PubMedCrossRefGoogle Scholar
  209. Muehlhauser, J., Schroeter, C.A., Kaufmann, P., and Castellucci, M.: Expression of c-erb B-2 protein product in human placental villi as compared to EGF-receptor. Placenta 10:459, 1989.CrossRefGoogle Scholar
  210. Myers, R.E., and Fujikura, T.: Placental changes after experimental abruptio placentae and fetal vessel ligation of rhesus monkey placenta. Am. J. Obstet. Gynecol. 100:846–851, 1968.Google Scholar
  211. Nagy, T., Boros, B., and Benkoe, K.: Elektronenmikroskopische Untersuchungen junger und reifer menschlicher Plazenten. Arch. Gynäkol. 200:428–440, 1965.PubMedCrossRefGoogle Scholar
  212. Nelson, D.M., Smith, C.H., Enders, A.C., and Donohue, T.M.: The non-uniform distribution of acidic components on the human placental syncytial tropho-blast surface membrane: a cytochemical and analytical study. Anat. Rec. 184:159–182, 1976.PubMedCrossRefGoogle Scholar
  213. Nelson, D.M., Enders, A.C., and King, B.F.: Galac-tosyltransferase activity of the microvillous surface of human placental syncytial trophoblast. Gynecol. Invest. 8:267–281, 1977.PubMedCrossRefGoogle Scholar
  214. Nelson, D.M., Smith, R.M., and Jarett, L.: Nonuniform distribution and grouping of insulin receptors on the surface of human placental syncytial trophoblast. Diabetes 27:530–538, 1978.PubMedCrossRefGoogle Scholar
  215. Nelson, D.M., Meister, R.K., Ortman-Nabi, J., Sparks, S., and Stevens, V.C.: Differentiation and secretory activities of cultured human placental cytotropho-blast. Placenta 7:1–16, 1986.PubMedCrossRefGoogle Scholar
  216. Nessmann, C., Huten, Y., and Uzan, M.: Placental correlates of abnormal umbilical doppler index. Trophoblast Res. 3:309–323, 1988.Google Scholar
  217. Nikolov, Sp.D., and Schiebler, T.H.: Über das fetale Gefäßsystem der reifen menschlichen Placenta. Z. Zellforsch. 139:333–350, 1973.PubMedCrossRefGoogle Scholar
  218. Nikolov, Sp.D., and Schiebler, T.H.: Über Endothel-zellen in Zottengefäßen der reifen menschlichen Placenta. Acta Anat. (Basel) 110:338–344, 1981.CrossRefGoogle Scholar
  219. Nishihira, M., and Yagihashi, S.: Immunohistochemical demonstration of somatostatin-containing cells in the human placenta. Tohoku J. Exp. Med. 126:397, 1978.Google Scholar
  220. Nishihira, M., and Yagihashi, S.: Simultaneous detection of immunoreactive hCG-and somatostatin-containing cells and their gestational changes in the human placental villi and decidua. Acta Histochem. Cytochem. 12:434–442, 1979.Google Scholar
  221. Ockleford, C.D.: A three dimensional reconstruction of the polygonal pattern on placental coated vesicle membranes. J. Cell Sci. 21:83–91, 1976.PubMedGoogle Scholar
  222. Ockleford, C.D., and Menon, G.: Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron. J. Cell Sci. 25:279–291, 1977.PubMedGoogle Scholar
  223. Ockleford, C.D., Wakely, J., and Badley, R.A.: The human placental chorionic villous tree. International SEM-Symposium, Nijmegen, The Netherlands, 1981a.Google Scholar
  224. Ockleford, C.D., Wakely, J., and Badley, R. A.: Morphogenesis of human placental chorionic villi: cytoskele-tal, syncytioskeletal and extracellular matrix proteins. Proc. R. Soc. 212:305–316, 1981b.CrossRefGoogle Scholar
  225. Ockleford, C.D., Wakely, J., Badley, R.A., and Virtanen, I.: Intermediate filament proteins in human placenta. Cell Biol. Int. Rep. 5:762, 1981c.Google Scholar
  226. Ockleford, C.D., Nevard, C.H.F., Indans, I., and Jones, C.J.P.: Structure and function of the nematosome. J. Cell Sci. 87:27–44, 1987.PubMedGoogle Scholar
  227. Ohno, M., Martinez-Hernandez, A., Ohno, N., and Kefalides, N.A.: Laminin M is found in placental basement membranes, but not in basement membranes of neoplastic origin. Connect. Tissue Res. 15: 199–207, 1986.PubMedCrossRefGoogle Scholar
  228. Okudaira, Y., and Hayakawa, K.: Electron microscopic study on the surface coat of the human placental trophoblast. J. Electron Microsc. 24:279–2281, 1975.Google Scholar
  229. Orgnero De Gaisan, E., Aoki, A., Heinrich, D., and Metz, J.: Permeability studies of the guinea pig placental labyrinth. II. Tracer permeation and freeze fracture of fetal endothelium. Anat. Embryol. (Basel) 171:297–304, 1985.CrossRefGoogle Scholar
  230. Ortmann, R.: Zur Frage der Zottenanastomosen in der menschlichen Placenta. Z. Anat. Entwicklungsgesch. 111:173–185, 1941.CrossRefGoogle Scholar
  231. Ortmann, R.: Untersuchungen an einer in situ fixierten menschlichen Placenta vom 4.–5. Schwangerschaftsmonat. Arch. Gynäkol. 172:161–172, 1942.CrossRefGoogle Scholar
  232. Panigel, M.: Comparative physiological and pharmacological aspects of placental permeability and hemodynamics in the non-human primate placenta and in the isolated perfused human placenta. Excerpta Med. Internat. Symposium on Foeto-Placental Unit, No. 170, Milan. 170:13, 1968. Abstract No. 23, 1968.Google Scholar
  233. Panigel, M., and Myers, R.E.: Histological and ultrastructural changes in rhesus monkey placenta following interruption of fetal placental circulation by fetec-tomy or interplacental umbilical vessels ligation. Acta Anat. (Basel) 81:481–506, 1972.CrossRefGoogle Scholar
  234. Parmley, R.T., Takagi, M., and Denys, F.R.: Ultrastructural localization of glycosaminoglycans in human term placenta. Anat. Rec. 210:477–484, 1984.PubMedCrossRefGoogle Scholar
  235. Parmley, R.T., Barton, J.C., and Conrad, M.C.: Ultra-structural localization of transferrin, transferrin receptor, and ironbinding sites on human placental and duodenal microvilli. Br. J. Haematol. 60:81–89, 1985.PubMedCrossRefGoogle Scholar
  236. Peter, K.: Placenta-Studien. 1. Zotten und Zwischen-Zottenräume zweier Placenta aus den letzten Monaten der Schwangerschaft. Z. Mikrosk. Anat. Forsch. 53:142–174, 1943.Google Scholar
  237. Peter, K.: Placenta-Studien. 2. Verlauf, Verzweigung und Verankerung der Chorionzottenstämme und ihrer Äste in geborenen Placemen. Z. Mikrosk. Anat. Forsch. 56:129–172, 1951.Google Scholar
  238. Petraglia, F., Sawchenko, P., Lim, A.T.W., Rivier, J., and Vale, W.: Localization, secretion, and action of inhibin in human placenta. Science 237:187–189, 1987.PubMedCrossRefGoogle Scholar
  239. Petraglia, F., Calza, L., Giardino, L., Sutton, S., Marrama, P., Rivier, J., Genazzani, A.R., and Vale, W.: Identification of immunoreactive neuropeptide-Y in human placenta: localization, secretion, and binding sites. Endocrinology 124:2016–2022, 1989.PubMedCrossRefGoogle Scholar
  240. Pfister, C., Scheuner, G., Bahn, H., and Stiller, D.: Immunhistochemischer Nachweis von Fibronectin in der menschlichen Placenta. Acta Histochem. (Jena) 84:83–91, 1988.CrossRefGoogle Scholar
  241. Pfister, C., Scheuner, G., and Staedtler, N.: Fluoresces- und polarisationsoptische Untersuchungen zur qualitativen und quantitativen Erfassung neutraler Carbohydrate in Basalmembranen menschlicher Placenta-Zotten. Acta Histochem. (Jena) 85:29–37, 1989.CrossRefGoogle Scholar
  242. Pierce, G.B., and Midgley, A.R.: The origin and function of human syncytiotrophoblast giant cells. Am. J. Pathol. 43:153–173, 1963.PubMedGoogle Scholar
  243. Piotrowicz, B., Niebroj, T.K., and Sieron, G.: The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem. Cytochem. 7: 435–444,1969.Google Scholar
  244. Rao, C.V., Carman, E.P., Chegini, N., and Schultz, G.S.: Binding sites for epidermal growth factor in human fetal membranes. J. Clin. Endocrinol. Metab. 58:1034–1042, 1984.PubMedCrossRefGoogle Scholar
  245. Rao, C.V., Ramani, N., Chegini, N., Stadig, B.K., Carman Jr., F.R., Woost, P.G., Schultz, G.S., and Cook, C.L.: Topography of human placental receptors for epidermal growth factor. J. Biol. Chem. 260:1705–1710, 1985.PubMedGoogle Scholar
  246. Reale, E., Wang, T., Zaccheo, D., Maganza, C., and Pescetto, G.: Junctions on the maternal blood surface of the human placental syncytium. Placenta 1:245–258, 1980.PubMedCrossRefGoogle Scholar
  247. Rhodin, J., and Terzakis, J.: The ultrastructure of the human fullterm placenta. J. Ultrastruct. Res. 6:88–106, 1962.PubMedCrossRefGoogle Scholar
  248. Roeckelein, G., and Hey, A.: Ultrastrukturelle Untersuchungen der Vakuolenbildung in arteriellen Chori-ongefaßen der reifen menschlichen Plazenta. Z. Geburtshilfe Perinatol. 189:65–68, 1985.Google Scholar
  249. Rovasio, R.A., and Monis, B.: Cytochemical changes of a glycocalix of human placenta with maturation. Experientia 29:1115–1118, 1973.PubMedCrossRefGoogle Scholar
  250. Ruckhaeberle, K.E., and Ruckhaeberle, B.: Das Chori-onepithel in Resorptionszotten von Plazenten hypotropher Termgeborener. Zentralbl. Gynäkol. 98: 660–670, 1976.Google Scholar
  251. Saijonmaa, O., Laatikainen, T., and Wahlstroem, T.: Corticotrophin-releasing factor in human placenta: localization, concentration and release in vitro. Placenta 9:373–385, 1988.PubMedCrossRefGoogle Scholar
  252. Sakakibara, R., Yokoo, Y., Yoshikoshi, K., Tominaga, N., Eida, K., and Ishiguro, M.: Subcellular localization of intracellular form of human chorionic gonadotropin in first trimester placenta. J. Biochem. 102:993–1001, 1987.PubMedGoogle Scholar
  253. Sakata, M.: The study on the fetal placental circulation. Shikoku Acta Med. 16:796–812, 1960.Google Scholar
  254. Sakbun, V., Koay, E.S.C., and Bryant-Greenwood, G.D.: Immunocytochemical localization of prolactin and relaxin C-peptide in human decidua and placenta. J. Clin. Endocrinol. Metab. 65:339–343, 1987.PubMedCrossRefGoogle Scholar
  255. Salvaggio, A.T., Nigogosyan, G., and Mack, H.C.: Detection of trophoblast in cord blood and fetal circulation. Am. J. Obstet. Gynecol. 80:1013–1021, 1960.PubMedGoogle Scholar
  256. Scheuner, G.: Über die Verankerung der Nabelschnur an der Plazenta. Morphol. Jahrb. 106:73–89, 1972.Google Scholar
  257. Scheuner, G.: Zur Morphologie der materno-fetalen Stoffwechselschranke in der menschlichen Plazenta. Zentralbl. Gynäkol. 97:288–300, 1975.PubMedGoogle Scholar
  258. Scheuner, G., and Hutschenreiter, J.: Strukturanalysen an Basalmembranen. Gefäßwand Blutplasma 4:217–218, 1972.Google Scholar
  259. Scheuner, G., and Hutschenreiter, J.: Ergebnisse histo-physikalischer Untersuchungen zur submikroskopischen Struktur von Basalmembranen. Anat. Anz. 71: 1213–1216, 1977.Google Scholar
  260. Scheuner, G., Ruckhaeberle, K.-E., Flemming, G., and Reissig, D.: Submikroskopischer Nachweis orientierter Proteinfilamente im Plasmoditrophoblasten der menschlichen Plazenta. Anat. Anz. 147:145–151, 1980.PubMedGoogle Scholar
  261. Schiebler, T.H., and Kaufmann, P.: Über die Gliederung der menschlichen Placenta. Z. Zellforsch. 102:242–265, 1969.PubMedCrossRefGoogle Scholar
  262. Schiebler, T.H., and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., pp. 51–111. Thieme, Stuttgart, 1981.Google Scholar
  263. Schneider, H., and Dancis, J.: In vitro perfusion of human placental tissue. Contrib. Gynecol. Obstet. 13: 1–189, 1985.Google Scholar
  264. Schroeder, H., Nelson, P., and Power, B.: Fluid shift across the placenta. I. The effect of dextran T40 in the isolated guinea pig placenta. Placenta 3:327–338, 1982.CrossRefGoogle Scholar
  265. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomic In, Die Plazenta des Menschen. V. Becker, Th.H. Schiebler, and F. Kubli, eds., pp. 199–207. Thieme Verlag, Stuttgart, 1981.Google Scholar
  266. Schweikhart, G., and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Ultrastruktur des Syncytiotrophoblasten. Arch. Gynäkol. 222: 213–230,1977.PubMedCrossRefGoogle Scholar
  267. Sen, D.K., Kaufmann, P., and Schweikhart, G.: Classification of human placental villi. II. Morphometry. Cell Tissue Res. 200:425–434, 1979.PubMedCrossRefGoogle Scholar
  268. Sideri, M., De Virgiliis, G., Rainoldi, R., and Remotti, G.: The ultrastructural basis of the nutritional transfer: evidence of different patterns in the plasma membranes of the multilayered placental barrier. Trophoblast Res. 1:15–26, 1983.Google Scholar
  269. Simionescu, N.: Cellular aspects of transcapillary exchange. Physiol. Rev. 63:1536–1579, 1983.PubMedGoogle Scholar
  270. Smith, C.H., Nelson, D.M., King, B.F., Donohue, T.M., Ruzycki, S.T.M., and Kelley, L.K.: Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical and physiologic study. Am. J. Obstet. Gynecol. 128:190–196, 1977.PubMedGoogle Scholar
  271. Spanner, R.: Zellinseln und Zottenepithel in der zweiten Haelfte der Schwangerschaft. Morphol. Jahrb. 86: 407–461, 1941.Google Scholar
  272. Stark, J., and Kaufmann, P.: Protoplasmatische Tropho-blastabschnürungen in den mütterlichen Kreislauf bei normaler und pathologischer Schwangerschaft. Arch. Gynäkol. 210:375–385, 1971.PubMedCrossRefGoogle Scholar
  273. Stark, J., and Kaufmann, P.: Trophoblastische Plasmapolypen und regressive Veränderungen am Zotten-trophoblasten der menschlichen Placenta. Arch. Gynäkol. 212:51–67, 1972.PubMedCrossRefGoogle Scholar
  274. Stark, J., and Kaufmann, P.: Infarktgenese in der Placenta. Arch. Gynäkol. 217:189–208, 1974.PubMedCrossRefGoogle Scholar
  275. Stewart Jr., J.L., Sano, M.E., and Montgomery, T.L.: Hormone secretion by human placenta grown in tissue culture. J. Clin. Endocrinol. 8:175–188, 1948.CrossRefGoogle Scholar
  276. Stieve, H.: Neue Untersuchungen über die Placenta, besonders über die Entstehung der Placentasepten. Arch. Gynäkol. 161:160–167, 1936.CrossRefGoogle Scholar
  277. Stieve, H.: Das Zottenraumgitter der reifen menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 122:289–316, 1941.Google Scholar
  278. Strauss, L., Goldenberg, N., Hiroto, K., and Okudaira, Y.: Structure of the human placenta; with observations on ultrastructure of the terminal chorionic villus. Birth Defects 1:13–26, 1965.Google Scholar
  279. Stulc, J.: Extracellular transport pathways in the haemo-chorial placenta. Placenta 10:113–119, 1989.PubMedCrossRefGoogle Scholar
  280. Stulc, J., Friederich, R., and Jiricka, Z.: Estimation of the equivalent pore dimensions in the rabbit placenta. Life Sci. 8:167–180, 1969.PubMedCrossRefGoogle Scholar
  281. Takemura, R., and Werb, Z.: Secretory products of macrophages and their physiological functions. Am. J. Physiol. 246:C1–C9, 1984.Google Scholar
  282. Teasdale, F., and Jean-Jacques, G.: Morphometry of the microvillous membrane of the human placenta in maternal diabetes mellitus. Placenta 7:81–88, 1986.PubMedCrossRefGoogle Scholar
  283. Tedde, G., and Tedde Piras, A.: Mitotic index of the Langhans’ cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat. (Basel) 100:114–119, 1978.CrossRefGoogle Scholar
  284. Tedde, G., Tedde Piras, A., and Berta, R.: A new structural pattern of the human trophoblast: the syncytial units. In, Abstracts of the 11th Rochester Trophoblast Conference, no. 117, 1988a.Google Scholar
  285. Tedde, G., Tedde Piras, A., and Fenu, G.: Demonstration of an intercellular pathway of transport in the human trophoblast. In, Abstracts of the 11th Rochester Trophoblast Conference, no. 77, 1988b.Google Scholar
  286. Tenney, B., and Parker, F.: The placenta in toxemia of pregnancy. Am. J. Obstet. Gynecol. 39:1000–1005, 1940.Google Scholar
  287. Terzakis, J. A.: The ultrastructure of normal human first trimester placenta. J. Ultrastruct. Res. 9:268–284, 1963.CrossRefGoogle Scholar
  288. Thorn, W., Kaufmann, P., and Mueldener, B.: Kohlen-hydratumsatz, Energiedefizit und Plasmapolypenbildung in der Placenta nach Vergiftung mit Monojod-acetat und NaF. Arch. Gynäkol. 216:175–183, 1974.PubMedCrossRefGoogle Scholar
  289. Thorn, W., Kaufmann, P., Mueldener, B., and Freese, U.: Einfluß von 2,4-Dinitrophenol, Monojodacetat, Natriumfluorid und Hypoxie auf Plasmapolypenbildung in der Placenta von Meerschweinchen. Arch. Gynäkol. 221:203–210, 1976.PubMedCrossRefGoogle Scholar
  290. Thornburg, K., and Faber, J.J.: Transfer of hydrophilic molecules by placenta and yolk sac of the guinea pig. Am. J. Physiol. 233:C111–C124, 1977.Google Scholar
  291. Tominaga, R., and Page, E.W.: Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol. 94:679–685, 1966.PubMedGoogle Scholar
  292. Trudinger, B.J., Giles, W.B., Cook, CM., Bombardieri, J., and Collins, L.: Uteroplacental blood flow velocity-time waveforms in normal and complicated pregnancy. Br. J. Obstet. Gynaecol. 92:23–30, 1985.PubMedGoogle Scholar
  293. Truman, P., and Ford, H.C.: The brush border of the human term placenta. Biochem. Biophys. Acta 779: 139–160, 1984.PubMedCrossRefGoogle Scholar
  294. Truman, P., Wakerfield, J.S.J., and Ford, H.C.: Microvilli of the human term placenta. Biochem. J. 196: 121–132, 1981.PubMedGoogle Scholar
  295. Unnikumar, K.R., Wegmann, R., and Panigel, M.: Immunohistochemical profile of the human placenta: studies on localization of prolactin, human chorionic gonadotropin, human placental lactogen, renin and oxytocin. Cell. Mol. Biol. 34:697–710, 1988.PubMedGoogle Scholar
  296. Vacek, Z.: Electron microscopic observations on the filaments in the trophoblast of the human placenta. Folia Morphol. (Praha) 17:382–388, 1969.Google Scholar
  297. Vacek, Z.: Derivation and ultrastructure of the stroma cells of the human chorionic villus. Folia Morphol. (Praha) 18:1–13, 1970.Google Scholar
  298. Vanderpuye, O., and Smith, C.H.: Proteins of the apical and basal plasma membranes of the human placental syncytiotrophoblast: immunochemical and electro-phoretic studies. Placenta 8:591–608, 1987.PubMedCrossRefGoogle Scholar
  299. Velardo, J.T., and Rosa, C.: Female genital system. In, Handbuch der Histochemie, Vol. VII/3. W. Graumann, and K. Neumann, eds. Fischer, Stuttgart, 1963.Google Scholar
  300. Virtanen, I., Laitinen, L., and Vartio, T.: Differential expression of the extra domain-containing form of cellular fibronectin in human placentas at different stages of maturation. Histochemistry 90:25–30, 1988.PubMedCrossRefGoogle Scholar
  301. Voigt, S., Kaufmann, P., and Schweikhart, G.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. II. Morphometrische Untersuchungen zum Ein-fluß des Fixationsmodus. Arch. Gynäkol. 226:347–362, 1978.Google Scholar
  302. Wachstein, M., Meagher, J.G., and Ortiz, J.: Enzymatic histochemistry of the term human placenta. Am. J. Obstet. Gynecol. 87:13–26, 1963.PubMedGoogle Scholar
  303. Wada, H.G., Gornicki, S.Z., and Sussman, H.H.: The sialogycoprotein subunits of human placental brush border membranes characterized by two-dimensional electrophoresis. J. Supramol. Struct. 6:473–484, 1977.PubMedCrossRefGoogle Scholar
  304. Wada, H.G., Hass, P.E., and Sussman, H.H.: Characterization of antigenic sialoglycoprotein subunits of the placental brush border membranes: comparison with liver and kidney membrane subunits by two-dimensional electrophoresis. J. Supramol. Struct. 10: 287–305, 1979.PubMedCrossRefGoogle Scholar
  305. Wainwright, S.D., and Wainwright, L.K.: Preparation of human placental villous surface membrane. Nature 252:302–303, 1974.PubMedCrossRefGoogle Scholar
  306. Wang, T., and Schneider, J.: Cellular junctions on the free surface of human placental syncytium. Arch. Gynecol. 240:211–216, 1987.PubMedCrossRefGoogle Scholar
  307. Wasserman, L., Abramovici, A., Shlesinger, H., Goldman, J.A., and Allalouf, D.: Histochemical localization of acidic glycosaminoglycans in normal human placentae. Placenta 4:101–108, 1983a.PubMedCrossRefGoogle Scholar
  308. Wasserman, L., Shlesinger, H., Goldman, J.A., and Allalouf, D.: Pattern of glycosaminoglycan distribution in tissue and blood vessels of human placenta. Gynecol. Obstet. Invest. 15:242–250, 1983b.PubMedCrossRefGoogle Scholar
  309. Weinberg, P.C., Cameron, I.L., Parmley, T., Jeter, J.R., and Pauerstein, C.J.: Gestational age and placental cellular replication. Obstet. Gynecol. 36:692–696, 1970.PubMedGoogle Scholar
  310. Wentworth, P.: The placenta in cases of hemolytic disease of the newborn. Am. J. Obstet. Gynecol. 98: 283–289, 1967.PubMedGoogle Scholar
  311. Werb, Z.: How the macrophage regulates its extracellular environment. Am. J. Anat. 166:237–256, 1983.PubMedCrossRefGoogle Scholar
  312. Werner, Ch., and Bender, H.G.: Phasenkontrastmikroskopie der Plazenta. In, Neue Erkenntnisse über die Orthologie und Pathologie der Plazenta. H.J. Foedisch, ed. Enke, Stuttgart, 1977.Google Scholar
  313. Whyte, A.: Lectin binding by microvillous membranes and coated-pit regions of human syncytial trophoblast. Histochem. J. 12:599–607, 1980.PubMedCrossRefGoogle Scholar
  314. Wielenga, G., and Willighagen, R.G.J.: The histochemistry of the syncytiotrophoblast and the stroma in the normal full-term placenta. Am. J. Obstet. Gynecol. 84:1059–1064, 1962.PubMedGoogle Scholar
  315. Wigglesworth, J.S.: The gross and microscopic pathology of the prematurely delivered placenta. J. Obstet. Gynaecol. Br. Commonw. 69:934–943, 1962.CrossRefGoogle Scholar
  316. Wilkin, P.: Pathologie du Placenta. Masson, Paris, 1965.Google Scholar
  317. Winterhager, E.: Dynamik der Zellmembran: Modellstudien während der Implantationsreaktion beim Kaninchen. Thesis, Technical University Aachen, 1985.Google Scholar
  318. Wislocki, G.B. and Bennett, H.S.: Histology and cytology of the human and monkey placenta, with special reference to the trophoblast. Am. J. Anat. 73:335–449, 1943.CrossRefGoogle Scholar
  319. Wood, G., Reynard, J., Krishnan, E., and Racela, L.: Immunobiology of the human placenta. I. IgGFc receptors in trophoblastic villi. Cell. Immunol. 35:191–204, 1978.PubMedCrossRefGoogle Scholar
  320. Wynn, R.M.: Fetomaternal cellular relations in the human basal plate: an ultrastructural study of the placenta. Am. J. Obstet. Gynecol. 97:832–850, 1967.PubMedGoogle Scholar
  321. Yeh, C.-J., Muehlhauser, J., Hsi, B.-I., Castellucci, M., and Kaufmann, P.: The expression of receptors for epidermal growth factor and transferrin on human trophoblast. Placenta 10:459, 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kurt Benirschke
    • 1
    • 2
  • Peter Kaufmann
    • 3
  1. 1.Pathology and Reproductive MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.University Medical CenterSan DiegoUSA
  3. 3.Institut für Anatomie der Medizinischen Fakultät, Rheinisch-Westfälische TechnischeHochschule AachenAachenGermany

Personalised recommendations