Advertisement

Nonlinear Parabolic Equations

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 117)

Abstract

We begin this chapter with some general results on the existence and regularity of solutions to semilinear parabolic PDE, first treating the pure initial-value problem in §1, for PDE of the form
$$\frac{{\partial u}}{{\partial t}} = Lu + F\left( {t,x,u,\nabla u} \right),u\left( 0 \right) = f,$$
(0.1)
, where u is defined on [0, T) × M, and M has no boundary. Some of the results established in §1 will be useful in the next chapter, on nonlinear, hyperbolic equations. We also give a precursor to results on the global existence of weak solutions, which will be examined further in Chapter 17, in the context of the Navier-Stokes equations for fluids.

Keywords

Banach Space Vector Field Parabolic Equation Travel Wave Solution Harnack Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar]
    D. Aronson, Density-dependent reaction-diffusion systems, pp. 161–176 in Dynamics and Modelling of Reaction Systems (W. Stout, W. Ray, and C. Conley, eds.), Academic Press, New York, 1980.Google Scholar
  2. [Ar2]
    D. Aronson, Regularity of flows in porus media, a survey, pp. 35–49 in [NPS], Parti.Google Scholar
  3. [AS]
    D. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25(1967), 81–122.MathSciNetMATHCrossRefGoogle Scholar
  4. [AW1]
    D. Aronson and H. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation, pp. 5–49 in LNM #446, Springer-Verlag, New York, 1975.Google Scholar
  5. [AW2]
    D. Aronson and H. Weinberger, Multidimensional nonlinear difusion arising in population genetics, Advances in Math. 30(1978), 37–76.MathSciNetCrossRefGoogle Scholar
  6. [BG]
    J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations, Preprint, 1992.Google Scholar
  7. [Bram]
    M. Bramson, Convergence of travelling waves for systems of Kolmogorov-like parabolic equations, pp. 179–190 in [NPS], Part I.Google Scholar
  8. [BrP]
    H. Brezis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Func. Anal. 6(1970), 237–281.MathSciNetMATHCrossRefGoogle Scholar
  9. [Br]
    F. Browder, A priori estimates for elliptic and parabolic equations, Proc. Symp. Pure Math. IV(1961), 73–81.MathSciNetCrossRefGoogle Scholar
  10. [CDH]
    J. Cannon, J. Douglas, and C. D. Hill, A multi-phase Stefan problem and the disappearance of phases, J.Math. Mech. 17(1967), 21–34.MathSciNetMATHGoogle Scholar
  11. [CH]
    J. Cannon and C. D. Hill, Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. Math. Mech. 17(1967), 1–20.MathSciNetMATHGoogle Scholar
  12. [Car]
    G. Carpenter, A geometrical approach to singular perturbation problems, with application to nerve impulse equations, J. Diff. Eq. 23(1977), 335–367.MathSciNetMATHCrossRefGoogle Scholar
  13. [Cher]
    S. S. Chern (ed.), Seminar on Nonlinear Partial Differential Equations, MSRI Publ. #2, Springer-Verlag, New York, 1984.MATHGoogle Scholar
  14. [CHMM]
    A. Chorin, T. Hughes, M. McCracken, and J. Marsden, Product formulas and numerical algorithms, CPAM 31(1978), 206–256.MathSciNetGoogle Scholar
  15. [Chow]
    B. Chow, The Ricci flow on the 2-sphere, J. Diff. Geom. 33(1991), 325–334.MATHGoogle Scholar
  16. [Con]
    C. Conley, On travelling wave solutions of nonlinear diffusion equations, pp. 498–510 in Lecture Notes in Physics #38, Springer-Verlag, New York, 1975.Google Scholar
  17. [DiB]
    E. DiBenejietto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.CrossRefGoogle Scholar
  18. [DF]
    E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357(1985), 1–22.MathSciNetMATHGoogle Scholar
  19. [Don]
    S. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50(1985), 1–26.MathSciNetMATHCrossRefGoogle Scholar
  20. [Dong]
    G. Dong, Nonlinear Partial Differential Equations of Second Order, Transi. Math. Monog., AMS, Providence, R. I., 1991.MATHGoogle Scholar
  21. [EL]
    J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1–68.MathSciNetMATHCrossRefGoogle Scholar
  22. [ES]
    J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer.J. Math. 86(1964), 109–160.MathSciNetMATHCrossRefGoogle Scholar
  23. [Ev]
    W. Everitt (ed.), Spectral Theory and Differential Equations, LNM #448, Springer-Verlag, New York, 1974.Google Scholar
  24. [FS]
    E. Fabes and D. Stroock, A new proof of Moser’s parabolic Hamack inequality via the old ideas of Nash, Arch. Rat. Mech. Anal. 96(1986), 327–338.MathSciNetMATHCrossRefGoogle Scholar
  25. [Fi]
    P. Fife, Asymptotic states of equations of reaction and diffusion, Bull. AMS 84(1978), 693–724.MathSciNetMATHCrossRefGoogle Scholar
  26. [Frd]
    M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ. Press, Princeton, N. J., 1985.MATHGoogle Scholar
  27. [Fr1]
    A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964.MATHGoogle Scholar
  28. [Fr2]
    A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York, 1982.MATHGoogle Scholar
  29. [Giu]
    E. Giusti (ed.), Harmonic Mappings and Minimal Immersions, LNM #1161, Springer-Verlag, New York, 1984.Google Scholar
  30. [Grin]
    P. Grindrod, Patterns and Waves, the Theory and Applications of Reaction-Diffusion Equations, Clarendon Press, Oxford, 1991.Google Scholar
  31. [Ham]
    R. Hamilton, Harmonic Maps of Manifolds with Boundary, LNS #471, Springer-Verlag, New York, 1975.MATHCrossRefGoogle Scholar
  32. [Ham2]
    R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17(1982), 255–307.MathSciNetMATHGoogle Scholar
  33. [Ham3]
    R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71(1988).Google Scholar
  34. [HW]
    R. Hardt and M. Wolf (eds.), Nonlinear Partial Differential Equations in Differential Geometry, IAS/Park City Math. Sen, Vol. 2, AMS, Providence, R. I., 1995.Google Scholar
  35. [Hen]
    D. Henry, Geometric Theory of Semilinear Parabolic Equations, LNM #840, Springer-Verlag, New York, 1981.MATHGoogle Scholar
  36. [Hild]
    S. Hildebrandt, Harmonic mappings of Riemannian manifolds, pp. 1–117 of [Giu].Google Scholar
  37. [HRW1]
    S. Hildebrandt, H. Raul, and R. Widman, Dirichlet’s boundary value problem for harmonic mappings of Riemannian manifolds, Math. Zeit. 147(1976), 225–236.MATHCrossRefGoogle Scholar
  38. [HRW2]
    S. Hildebrandt, H. Raul, and R. Widman, An existence theory for harmonic mappings of Riemannian manifolds, Acta Math. 138(1977), 1–16.MathSciNetMATHCrossRefGoogle Scholar
  39. [Ho]
    L. Hörmander, Non-linear Hyperbolic Differential Equations, Lecture Notes, Lund Univ., 1986–87.Google Scholar
  40. [Iv]
    A. Ivanov, Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order, Proc. Steklov Inst. Math. 160(1984), 1–287.Google Scholar
  41. [Jl]
    J. Jost, Lectures on harmonic maps, pp. 118–192 of [Giu].Google Scholar
  42. [J2]
    J. Jost, Nonlinear Methods in Riemannian and Kahlerian Geometry, Birkhäuser, Boston, 1988.CrossRefGoogle Scholar
  43. [K]
    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, pp. 25–70 of [Ev].Google Scholar
  44. [KP]
    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, CPAM 41(1988), 891–907.MathSciNetMATHGoogle Scholar
  45. [KSt]
    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalitiesand Their Applications, Academic Press, New York, 1980.MATHGoogle Scholar
  46. [KPP]
    A. Kolmogorov, I. Petrovskii, and N. Piskunov, A study of the equations of diffusion with increase in the quantity of matter, and its applications to a biological problem, Moscow Univ. Bull. Math. 1(1937), 1–26.Google Scholar
  47. [Kru]
    S. Krushkov, A priori estimates for weak solutions of elliptic and parabolic differential equations of second order, Dokl. Akad. Nauk. SSSR 150(1963), 748–751. Engl, transi. Soviet Math. 4(1963), 757–761.MathSciNetGoogle Scholar
  48. [Kry]
    N. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order, D.Reidel, Boston, 1987.MATHCrossRefGoogle Scholar
  49. [KryS]
    N. Krylov and M. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR Izv. 16(1981), 151–164.MATHCrossRefGoogle Scholar
  50. [KMP]
    K. Kunisch, K. Murphy, and G. Peichl, Estimates on the conductivity in the one-phase Stefan problem I: basic results, Preprint 1991.Google Scholar
  51. [LSU]
    O. Ladyzhenskaya, B. Solonnikov, and N. Ural’tseva, Linear and QuasilinearEquations of Parabolic Type, AMS Transi. 23, Providence, 1968.MATHGoogle Scholar
  52. [Leu]
    A. Leung, Systems of Nonlinear Partial Differential Equations, Kluwer, Boston, 1989.MATHCrossRefGoogle Scholar
  53. [Lie]
    G. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, Anw. Sc. Norm. Sup. Pisa 13(1986), 347–387.MathSciNetMATHGoogle Scholar
  54. [Mars]
    J. Marsden, On product formulas for nonlinear semigroups, J. Func. Anal. 13(1973), 51–72.MathSciNetMATHCrossRefGoogle Scholar
  55. [McK]
    H. McKean, Application of Brownian motion to the equation of Kolmogorov- Petrovskii-Piskunov, CPAM 28(1975), 323–331.MathSciNetMATHGoogle Scholar
  56. [Mei]
    A. Meirmanov, The Stefan Problem, W. de Gruyter, New York, 1992.MATHCrossRefGoogle Scholar
  57. [Mosl]
    J. Moser, A new proof of DeGiorgi’s theorem concerning the regularity problem for elliptic differential equations, CPAM 13(1960), 457–468.MATHGoogle Scholar
  58. [Mos2]
    J. Moser, A Hamack inequality for parabolic differential equations, CPAM 15(1964), 101–134.Google Scholar
  59. [Mos3]
    J. Moser, On a pointwise estimate for parabolic differential equations, CPAM 24(1971), 727–740.MATHGoogle Scholar
  60. [Mos4]
    J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations, I, Ann. Sc. Norm. Sup. Pisa 20(1966), 265–315.MATHGoogle Scholar
  61. [Mur]
    J. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.MATHCrossRefGoogle Scholar
  62. [Na]
    J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80(1958), 931–954.MathSciNetMATHCrossRefGoogle Scholar
  63. [NPS]
    W.-M. Ni, L. Peletier, and J. Serrin (eds.), Nonlinear Diffusion Equations and Their Equilibrium States, MSRI Publ., Vols. 12–13, Springer-Verlag, New York, 1988.Google Scholar
  64. [Po]
    J. Polking, Boundary value problems for parabolic systems of partial differential equations, Proc. Symp. Pure Math. X(1967), 243–274.MathSciNetCrossRefGoogle Scholar
  65. [Rab]
    J. Rabinowitz, A graphical approach for finding travelling wave solutions to reaction-diffusion equations, Senior thesis, Math. Dept., University of North Carolina, 1994.Google Scholar
  66. [Rau]
    J. Rauch, Global existence for the Fitzhugh-Nagumo Equations, Comm. PDE 1(1976), 609–621.MathSciNetCrossRefGoogle Scholar
  67. [RaSm]
    J. Rauch and J. Smoller, Qualitative theory of the Fitzhugh-Nagumo equations, Advances in Math. 27(1978), 12–44.MathSciNetMATHCrossRefGoogle Scholar
  68. [Rot]
    F. Rome, Global Solutions of Reaction-Diffusion Equations, LNM #1072, Springer-Verlag, New York, 1984.Google Scholar
  69. [Rub]
    L. Rubenstein, The Stefan Problem, Transi. Math. Monogr. #27, AMS, Providence, R. I., 1971.Google Scholar
  70. [Sch]
    R. Schoen, Analytic aspects of the harmonic map problem, pp. 321–358 in [Cher].Google Scholar
  71. [ScUl]
    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff.Geom. 17(1982), 307–335.MathSciNetMATHGoogle Scholar
  72. [ScU2]
    R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18(1983), 253–268.MathSciNetMATHGoogle Scholar
  73. [Siu]
    Y.-T. Siu, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Birkhäuser, Basel, 1987.MATHCrossRefGoogle Scholar
  74. [Smo]
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.MATHCrossRefGoogle Scholar
  75. [Str]
    M. Struwe, Variational Methods, Springer-Verlag, New York, 1990.MATHCrossRefGoogle Scholar
  76. [Str2]
    M. Struwe, Geometrie evolution problems, pp. 259–339 in [HW].Google Scholar
  77. [Tay]
    M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.MATHCrossRefGoogle Scholar
  78. [Tro]
    A. Tromba, Teichmuller Theory in Riemannian Geometry, ETH Lectures in Math., Birkhäuser, Basel, 1992.CrossRefGoogle Scholar
  79. [Tso]
    K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, CPAM 38(1985), 867–882.MathSciNetMATHGoogle Scholar
  80. [Wan]
    W.-P. Wang, Multiple impulse solutions to McKean’s caricature of the nerve equation, CPAM 41(1988), 71–103; 997–1025.Google Scholar
  81. [Ye]
    R. Ye, Global existence and convergence of Yamabe flow, J. Diff. Geom. 39(1994), 35–50.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations