Dirac Operators and Index Theory

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 116)


The physicist P. A. M. Dirac constructed first-order differential operators whose squares were Laplace operators, or more generally wave operators, for the purpose of extending the Schrodinger-Heisenberg quantum mechanics to the relativistic setting. Related operators have been perceived to have central importance in the interface between PDE and differential geometry, and we discuss some of this here.


Riemannian Manifold Vector Bundle Line Bundle Dirac Operator Clifford Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [An]
    M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. AMS 2(1989), 455–490.MATHGoogle Scholar
  2. [ABP]
    M. Atiyah, R. Bott, and V. Patodi, On the heat equation and the index theorem, Inventiones Math. 19(1973), 279–330.MathSciNetMATHCrossRefGoogle Scholar
  3. [ABS]
    M. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3(1964), 3–38.MathSciNetMATHCrossRefGoogle Scholar
  4. [AHS]
    M. Atiyah, N. Hitchen, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Royal Soc. London A 362(1978), 425–461.MATHCrossRefGoogle Scholar
  5. [AS]
    M. Atiyah and I. Singer, The index of elliptic operators I, Ann. of Math. 87(1968), 484–530; III, Ann. of Math. 87(1968), 546–664; IV, Ann. of Math. 93(1971), 119 – 138; V, Ann. of Math. 93(1971), 139–149.MathSciNetCrossRefGoogle Scholar
  6. [BDT]
    P. Baum, R. Douglas, and M. Taylor, Cycles and relative cycles in analytic K- homology, J. Diff. Geom. 30(1989), 761–804.MathSciNetMATHGoogle Scholar
  7. [Ber]
    F. Berezin, The Method of Second Quantization, Academic Press, New York, 1966.MATHGoogle Scholar
  8. [BGM]
    M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une Variété Riemannienne, LNM #194, Springer-Verlag, New York, 1971.MATHGoogle Scholar
  9. [BGV]
    N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, New York, 1992.MATHCrossRefGoogle Scholar
  10. [BV]
    N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113(1985), 305–345.MathSciNetMATHGoogle Scholar
  11. [BV2]
    N. Berline and M. Vergne, A proof of Bismut local index theorem for a family of Dirac operators, Topology 26(1987), 438–464.MathSciNetCrossRefGoogle Scholar
  12. [Bes]
    A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.MATHGoogle Scholar
  13. [B1]
    J. Bismut, The Atiyah-Singer theorems for classical elliptic operators, a probabilistic approach, J. Func. Anal. 57(1984), 56–99.MathSciNetMATHCrossRefGoogle Scholar
  14. [Bi2]
    J. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83(1986), 91–151.MathSciNetMATHCrossRefGoogle Scholar
  15. [BiC]
    J. Bismut and J. Cheeger, Families index for manifolds with boundary, super- connections, and cones, I, J. Func. Anal. 89(1990), 313–363; II, J. Func. Anal. 90(1990), 306–354.MathSciNetMATHCrossRefGoogle Scholar
  16. [B1]
    B. Blackadar, K-theory for Operator Algebras, Springer-Verlag, New York, 1986.MATHCrossRefGoogle Scholar
  17. [BTu]
    R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, 1982.MATHCrossRefGoogle Scholar
  18. [Ch]
    J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109(1979), 259–322.MathSciNetMATHCrossRefGoogle Scholar
  19. [Cher]
    S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds., Ann. Math. 45(1944), 747–752.MathSciNetMATHCrossRefGoogle Scholar
  20. [Chv]
    C. Chevalley, Theory of Lie Groups, Princeton Univ. Press, Princeton, N. J., 1946.MATHGoogle Scholar
  21. [Con]
    A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.MATHGoogle Scholar
  22. [CS]
    H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrodinger Operators, Springer-Verlag, New York, 1987.Google Scholar
  23. [D]
    S. Donaldson, The Seiberg- Witten equations and 4-manifold topology, Bull. AMS 33(1996), 45–70.MathSciNetMATHCrossRefGoogle Scholar
  24. [Don]
    H. Donnelly, Local index theorems for families, Mich. Math. J. 35(1988), 11–20.MathSciNetMATHCrossRefGoogle Scholar
  25. [EGH]
    T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, Gauge Theories, and Differential Geometry, Physics Reports, Vol. 66, no. 6(1980).MathSciNetCrossRefGoogle Scholar
  26. [FU]
    D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer-Verlag, New York, 1984.MATHCrossRefGoogle Scholar
  27. [Gt1]
    E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys. 92(1983), 163–178.MathSciNetMATHCrossRefGoogle Scholar
  28. [Gt2]
    E. Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25(1986), 111–117.MathSciNetMATHCrossRefGoogle Scholar
  29. [Gil]
    P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, Boca Raton, FL, 1995.MATHGoogle Scholar
  30. [Gu]
    R. Gunning, Lectures on Riemann Surfaces, Princeton Univ. Press, Princeton, N. J., 1967.MATHGoogle Scholar
  31. [Har]
    R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.MATHCrossRefGoogle Scholar
  32. [Hi]
    N. Hicks, Notes on Differential Geometry, Van Nostrand, New York, 1965.MATHGoogle Scholar
  33. [Hir]
    F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966.MATHCrossRefGoogle Scholar
  34. [KN]
    S. Kobayashi and N. Nomizu, Foundations of Differential Geometry, Interscience, New York, Vol.1, 1963; Vol. 2, 1969.MATHGoogle Scholar
  35. [Ko1]
    K. Kodaira, The theorem of Riemann-Roch on compact analytic surfaces, Amer. J. Math. 73(1951), 813–875.MathSciNetMATHCrossRefGoogle Scholar
  36. [Ko2]
    K. Kodaira, The theorem of Riemann-Roch for adjoint systems on 3-dimensional algebraic varieties, Ann. of Math. 56(1952), 298–342.MathSciNetMATHCrossRefGoogle Scholar
  37. [Kot]
    T. Kotake, An analytical proof of the classical Riemann-Roch theorem, Proc. Symp. Pure Math. 16(1970), 137–146.MathSciNetCrossRefGoogle Scholar
  38. [LM]
    H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, N. J., 1989.MATHGoogle Scholar
  39. [Lic]
    A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A 257(1963), 7–9.MathSciNetMATHGoogle Scholar
  40. [MS]
    H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43–69.MathSciNetMATHGoogle Scholar
  41. [Mel]
    R. Melrose, Index Theory on Manifolds with Corners, A. K. Peters, Boston, 1994.Google Scholar
  42. [MiS]
    J. Milnor and J. Stasheff, Characteristic Classes, Princeton Univ. Press, Princeton, N. J., 1974.MATHGoogle Scholar
  43. [Mor]
    J. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Univ. Press, Princeton, N. J., 1996.MATHGoogle Scholar
  44. [Pal]
    R. Palais, ed., Seminar on the Atiyah-Singer Index Theorem, Princeton Univ. Press, Princeton, N. J., 1963.Google Scholar
  45. [Pt1]
    V. Patodi, Curvature and the eigenforms of the Laplace operator, J. Diff. Geom. 5(1971), 233–249.MathSciNetMATHGoogle Scholar
  46. [Pt2]
    V. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kahler manifolds, J. Diff. Geom. 5(1971), 251–283.MathSciNetMATHGoogle Scholar
  47. [Poo]
    W. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.MATHGoogle Scholar
  48. [Roe]
    J. Roe, Elliptic Operators, Topology, and Asymptotic Methods, Longman, New York, 1988.MATHGoogle Scholar
  49. [Rog]
    A. Rogers, A superspace path integral proof of the Gauss-Bonnet-Chern theorem, J. of Geom. and Phys. 4(1987), 417–437.MATHCrossRefGoogle Scholar
  50. [Spi]
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1–5, Publish or Perish Press, Berkeley, 1979.Google Scholar
  51. [Stb]
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.MATHGoogle Scholar
  52. [Tro]
    A. Tromba, A classical variational approach to Teichmuller theory, pp. 155–185 in LNM #1365, Springer-Verlag, New York, 1989.Google Scholar
  53. [Wit]
    E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B202(1982), 253.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations