Optical Amplifiers



Optical communication systems are now widely spread over the entire earth. The world-wide link of optical fibers for signal transfer is more than 10,000 km. Even though the loss of optical fibers is as low as 0.2 dB/km, the loss over a long distance is still substantial. Therefore, the optical signals must be amplified after they propagate in the fiber for significant distances. The traditional way to amplify the optical signal is to convert the optical signal back to an electronic signal first, then amplify the signal in the electronic domain. The amplified electronic signal is then converted back into an optical signal again and delivered into the optical fiber. The block diagram of process is shown in Fig. 4-1.


Pump Power Stimulate Raman Scattering Semiconductor Optical Amplifier Pump Wave Wavelength Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, Govind P. and Duna, Niloy K., Semiconductor Lasers. 2nd Ed., Van Nostrand Reinhold, 1993.Google Scholar
  2. 2.
    Agrawal G. P., Nonlinear Fiber Optics. 2/ed. Academic Press, 1995.Google Scholar
  3. 3.
    Miniscalco, W. J., Erbium-doped glasses for fibre amplifiers at 1500 nm. J. Lightwave Technology 1991; 9: 234–250.ADSCrossRefGoogle Scholar
  4. 4.
    Armitage, J. R., “Introduction to Glass Fibre Lases and Amplifires.” In Optical Fibre Lasers and Amplifiers. France, P. W., ed. Blakie and Son Ltd., 1991.Google Scholar
  5. 5.
    Miniscalco, W. J., “Optical and Electronic Properties of Rare Earth Ions in Glass.” In Rare Earth Doped Fiber Lasers and Amplifiers. Digonnet, M. J. F., ed. Marcel Dekker, Inc., 1993.Google Scholar
  6. 6.
    Siegman, A. E., Lasers. University Science Books, 1986.Google Scholar
  7. 7.
    Schmidt, B. E., Mohrdiek, S., and Harder, C. S., “Pump Laser Diodes.” In Optical Fiber Telecommunications IVA: Components. Kaminow, I. and Li, T., eds. Academic Press, 2002.Google Scholar
  8. 8.
    Sun, Y., Judkins, Srivastava, A. K., Garrett, L., Zyskind, J. L., Sulhoff, J. W., Wolf, C., Derosier, R. M., Gnauck, A. H., Tkach, R. W., Zhou, J., Espindola, R. P., Vengsarkar, A. M., and Chraplyvy, A. R., Transmission of 32-WDM 10-Gb/s channels over 640 km using broad band, gain-flattened erbium-doped silica fiber amplifiers. IEEE Photonincs Technology Letters 1997; 9: 1652–1654.Google Scholar
  9. 9.
    Desurvire, E., “Fundamentals of Noise in Optical Fiber Amplifiers.” In Erbium-Doped Fiber Amplifiers, Principles and Applications. Desurvire, E., ed. John Wiley Sons, Inc., 1994.Google Scholar
  10. 10.
    Mynbaev, D. K. and Scheiner, L. L., Fiber-Optic Communication Technology. Prentice Hall, 2001.Google Scholar
  11. 11.
    Ohishi, Y., Kanamori, T., Kitagawa, T., Takahashi, S., Snitzer, E., and Sigel, G. H., Pr’+-doped fluoride fiber amplifier operating at 1.31 µm. Optics Letters 1991; 16: 1747–1749.ADSCrossRefGoogle Scholar
  12. 12.
    Nishida, Y., Tamada, M., Kanamori, T., Kobayashi, K., Temmyo, J., Sudo, S., and Ohishi, Y., Development of an efficient praseodymium-doped fiber amplifier. IEEE Journal of Quantum Electronics 1998; 8: 1332–1339.ADSCrossRefGoogle Scholar
  13. 13.
    Olsson, N. A., Oberg, M. G., Tzeng, L. D., and Cella, T., Ultra-low reflectivity 1.5 pm semiconductor laser amplifiers. Electronics Letters 1988; 24: 569–570.CrossRefGoogle Scholar
  14. 14.
    Alphonse, G. A., Gilbert, D. B., Harvey, M. G., and Ettenberg, M., High-power superluminescent diodes, IEEE Journal of Quantum Electronics 1988; 24: 2454–2457.ADSCrossRefGoogle Scholar
  15. 15.
    Lin, C. F., The influence of facet roughness on the reflectivities of etched-angled facets for superluminescent diodes and optical amplifiers. IEEE Photonics Technology Letters 1992; 4: 127–129.ADSCrossRefGoogle Scholar
  16. 16.
    Semenov, A. T., Shidlovski, V. R., and Satin, S. A., Wide spectrum single quantum well superluminescent diodes at 0.8 mm with bent optical waveguide. Electronics Letters 1993; 29: 854–856.CrossRefGoogle Scholar
  17. 17.
    Lin, C. F. and Juang, C. S., Superluminescent diode with bent waveguide. IEEE Photonics Technology Letters 1996; 8: 296–208.CrossRefGoogle Scholar
  18. 18.
    Lin, C. F., Superluminescent diodes with angled facet etched by chemically assisted ion beam etching. Electronics Letters 1991; 27: 968–969.ADSCrossRefGoogle Scholar
  19. 19.
    Cha, I., Kitamura, M., Honmou, H., and Mito, I., band traveling-wave semiconductor optical amplifiers with window facet structure. Electronics Letters 1989; 25: 1241–1242.CrossRefGoogle Scholar
  20. 20.
    Mukai, T. and Yamamoto, Gain, frequency bandwidth, and saturation output power of AIGaAs DH laser amplifiers. IEEE Journal of Quantum Electronics 1981; 17: 1028–1034.ADSCrossRefGoogle Scholar
  21. 21.
    Feuer, M. D., Wiesenfeld, J. M., Perino, J. S., Burrus, C. A., Raybon, G., Shunk, S. C., and Dutta, N. K., Single part laser amplifier modulators for local access. IEEE Photonics Technology Letters 1996; 8: 1175–1177.ADSCrossRefGoogle Scholar
  22. 22.
    Tai, C. and Way, W. I., Dynamic range and switching speed limitation of an N x N optical packet switch based on low gain semiconductor optical amplifiers. IEEE Journal of Lightwave technology 1996; 14: 525–533.Google Scholar
  23. 23.
    Jourdan, A., Masetti, F., Garnot, M., Soulage, G., and Sotom, M., Design and implementation for a fully reconfigurable all-optical crossconnect for high capacity multi wavelength transport networks. IEEE Journal of Lightwave technology 1996; 14: 1198 1206.Google Scholar
  24. 24.
    Raman, C. V., A new radiation. Indian Journal of physics 1928; 2: 387–398.Google Scholar
  25. 25.
    Kittel, Charles, Introduction to Solid State Physics. John Wiley Sons, Inc., 1976.Google Scholar
  26. 26.
    Tang, C. L., Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process. Journal of Applied Physics 1966; 37: 2945–2955.ADSCrossRefGoogle Scholar
  27. 27.
    Yariv, A., Quantum Electronics. 2”d Ed., John Wiley Sons, Inc., 1977.Google Scholar
  28. 28.
    Woodbury, E. J. and Ng, W. K., Ruby laser operation in the near IR. Proc. IRE 1962; 50: 2367.Google Scholar
  29. 29.
    Shen, Y. R. and Bloembergen, N., Theory of stimulated Brillouin and Raman scattering. Physical Review 1965; 137: A 1787-A1804.Google Scholar
  30. 30.
    Stolen, R. H. Polarization effects in fiber Raman and Brillouin lasers. IEEE Journal of Quantum Electronics 1979; 15: 1157–1161.ADSCrossRefGoogle Scholar
  31. 31.
    Rottwitt, K. and Ztentz, A., “Raman Amplification in Lightwave Communication Systems.” In Optical Fiber Telecommunications IVA: Components. Kaminow, I. and Li, T., eds. Academic Press, 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations