Pharmacokinetics and Biopharmaceutical Aspects of Some Anti-Glaucoma Drugs

  • B. Plazonnet
  • J. Grove
  • M. Durr
  • C. Mazuel
  • M. Quint
  • A. Rozier
Part of the FIDIA Research Series book series (FIDIA, volume 11)


The therapy of glaucoma has used several classes of active ingredients which were mostly cholinergic and adrenergic drugs. The carbonic anhydrase inhibitors were essentially systemic drugs but recently new potent compounds have been described to be active after topical administration. Each class of drugs has a different pharmacokinetic behaviour due to the physico-chemical properties of the individual compounds. The dynamics of ocular fluids, especially the turnover of tears, are responsible for a poor availability of drugs administered topically in the conjunctival cul-de-sac. The recent galenic developments in ophthalmic formulations have essentially aimed at achieving better control of the residence of anti-glaucoma drugs close to the anterior segment of the eye and derivatization and prodrug approaches have improved transcorneal penetration.


Aqueous Humor Drop Size Carbonic Anhydrase Inhibitor Albino Rabbit Ophthalmic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abshire R, Cash P (1986). Sterile ophthalmic ointment and suspension manufacturing. J. Parenteral Sci. and Technol. 40: 97–99Google Scholar
  2. Adler CA, Maurice DM, Paterson ME (1971) The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp. Eye Res. 11: 34–42CrossRefPubMedGoogle Scholar
  3. Ahmed I, Patton TF (1985) Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest. Ophthalmol. Vis. Sci. 26: 584–587PubMedGoogle Scholar
  4. Aldrete J, McDonald TO, De Sousa B (1983) Comparative evaluation of pilocarpine gel and timolol in patients with glaucoma. Glaucoma 5: 236–241Google Scholar
  5. Andermann C, Mialhe D, Arne JL, Vende D, Bec P (1983) Effet tensionnel après instillation d’une goutte de pilocarpine retard. Résultats cliniques de son action à moyen terme. J. Fr. Ophtalmol 6: 367–374PubMedGoogle Scholar
  6. Anderson JA, Davis WL, Wei CP (1980) Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, epinephrine. Invest. Ophthalmol. Vis. Sci. 19: 817–823PubMedGoogle Scholar
  7. Ariens EJ, (1974) Drug levels in the target tissue and effect. Clin. Pharmacol. Therap. 16: 155–175.Google Scholar
  8. Bar-Ilan A, Pessah NI, Maren TH (1986) Ocular penetration and hypotensive activity of the topically applied carbonic anhydrase inhibitor L-645,151. J. Ocular Pharmacol. 2: 109–120CrossRefGoogle Scholar
  9. Becker B (1954) Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, Diamox. Am. J. Ophthalmol. 37: 13–15Google Scholar
  10. Benedetto DA, Shah DO, Kaufman HE (1975) The instilled fluid dynamics and surface chemistry of polymers in the precorneal tear film. Invest. Ophthalmol. Vis. Sci. 14: 887–902Google Scholar
  11. Benson H (1974) Permeability of the cornea to topically applied drugs. Arch. Ophthalmol. 91: 313–327CrossRefPubMedGoogle Scholar
  12. Blumenthal M, Ticho U, Zonis S, Gal A, Blank I, Mazor Z (1979) Further clinical trial with piloplex. A new long-acting pilocarpine salt. Glaucoma 1: 145Google Scholar
  13. Brown RH, Hotchkiss ML, Davis ED (1985) Creating smaller eye drops by reducing eye dropper tip dimensions. Am. J. Ophthalmol. 99: 460–464PubMedGoogle Scholar
  14. Brown RH, Lynch MG (1986) Design of eyedropper tips for topical beta-blocking agents. Amer. J. Ophthalmol. 102: 123–124CrossRefGoogle Scholar
  15. Bundgaard H, Advances in drug delivery, Churchill College, Cambridge (UK) 7–9 July 1986.Google Scholar
  16. Bundgaard H, Buur A, Chang SC, Lee VHL (1986c) Prodrugs of timolol for improved ocular delivery: synthesis, hydrolysis kinetics and lipophilicity of various timolol esters. Int. J. Pharmac. 33: 15–26CrossRefGoogle Scholar
  17. Bundgaard H, Falch E, Larsen C, Mikkelson TJ (1986a) Pilocarpine prodrugs I. Synthesis, physicochemical properties and kinetics of lactonization of pilocarpic acid esters. J. Pharm. Sci. 75: 36–43CrossRefPubMedGoogle Scholar
  18. Bundgaard H, Falch E, Larsen C, Mosher GL, Mikkelson TJ (1985) Pilocarpic acid esters as novel sequentially labile pilocarpine prodrugs for improved ocular delivery. J. Med. Chem. 28: 979–981CrossRefPubMedGoogle Scholar
  19. Bundgaard H, Falch E, Larsen C, Mosher GL, Mikkelson TJ (1986b) Pilocarpine prodrugs II. Synthesis, stability, bioconversion and physicochemical properties of sequentially labile pilocarpine acid diesters. J. Pharm. Sci. 75: 775–783CrossRefPubMedGoogle Scholar
  20. Buri P, (1985) Voie oculaire. In: Buri P, Puisieux F, Doelker E, Benoît JP, (eds) Formes pharmaceutiques nouvelles, Lavoisier, Paris.Google Scholar
  21. Burstein NL, Anderson JA (1985) Review: corneal penetration and ocular bioavailability of drugs. J. Ocular Pharm. 1: 309–326.CrossRefGoogle Scholar
  22. Camber O (1985) An in-vitro model for determination of drug permeability through the cornea. Acta. Pharma. Suec. 22: 335–342.Google Scholar
  23. Chang SC, Bundgaard H, Lee VHL (1986b) Prodrug administration is more effective than drop size manipulation in reducing the systemic absorption of topically applied timolol in the pigmented rabbit. 1st national meeting of the Americal Assocation of pharmaceutical Scientists, Washington DC, Nov. 2–6. Pharm. Res. 3: 90SGoogle Scholar
  24. Chang SC, Lee VHL (1986a) Vehicle factors influencing the systemic absorption of topically applied timolol in the pigmented rabbit. 1st national meeting of the American Association of Pharmaceutical Scientists, Washington DC, Nov. 2–6. Pharm. Res. 3: 86S.Google Scholar
  25. Chieu TW (1978) Methods to achieve sustained drug delivery–the physical approach. In: Sustained and controlled release drug delivery systems Robinson JR, (ed), New York, Marcel Dekker 228–286Google Scholar
  26. Chrai SS, Makoid MC, Erikson SP, Robinson JR (1974) Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. J. Pharm. Sci. 63: 333–338CrossRefPubMedGoogle Scholar
  27. Chrai SS, Patton TF, Metha A, Robinson JR (1973) Lacrimal and instilled fluid dynamics in rabbits eyes. J. Pharm. Sci. 62: 1112–1121CrossRefPubMedGoogle Scholar
  28. Chrai SS, Robinson JR (1974) Ocular evaluation of mehtylcellulose vehicle in albino rabbits. J. Pharm. Sci. 63–1112–1121Google Scholar
  29. De Feo G, Piccinelli D, Putzolu S, Silvestrini B (1975) Effects of topically instilled drugs on intraocular pressure in rabbits. Arzneim.-Forsch (Drug Res.) 25: 806–809Google Scholar
  30. De Santis LM, Schoenwald RD (1978) Lack of influence of rabbit nictitating membrane on miosis effect of pilocarpine. J. Pharm. Sci. 67: 1189–1190CrossRefGoogle Scholar
  31. Doane MG, Jensen AD, Dolhman Ch (1978) Penetration routes of topically applied eye medications. Am. J. Ophthalmol. 85: 383–386PubMedGoogle Scholar
  32. Dunn DL, Scott BS, Dorsey ED (1981) Analysis of pilocarpine and isopilocarpine in ophthalmic solutions by normal phase high performance liquid chromatography. J. Pharm. Sci. 70: 446–449CrossRefPubMedGoogle Scholar
  33. Eller MG, Schoenwald RD, Dixson JA, Segarra T, Barfknecht CF (1985) Topical carbonic anhydrase inhibitors III: Optimization model for corneal penetration of ethoxzolamide analogues. J. Pharm. Sci. 74: 155–160CrossRefPubMedGoogle Scholar
  34. Ellis PP, Matsumura M, Rendi MA (1985) Pilocarpine concentrations in aqueous humor following single drop application I. Effect of soft contact lenses. Current Eye Res. 4: 1041–1047CrossRefGoogle Scholar
  35. Eriksen SP (1980) Physiological and formulation constraints on ocular drug bioavailability. In: Robinson JR (ed) Ophthalmic drug delivery systems ( 1980 ) 55–70. Washington DC, American Pharmaceutical Association.Google Scholar
  36. File RR, Patton TF (1980) Topically Applied Pilocarpine: Human pupillary response as a function of drop size. Arch. Ophthalmol. 98: 112–115CrossRefPubMedGoogle Scholar
  37. Friedland BR, Maren TH (1984) Carbonic anhydrase Pharmacology of inhibitors and treatment of glaucoma. In: Sears ML (ed), Pharmacology of the eye, Springer Verlag, Heidelberg.Google Scholar
  38. Friedman Z, Allen RC, Raph SM (1985) Topical acetazolamide and methazolamide delivered by contact lenses. Arch. Ophthalmol. 103: 963–966CrossRefPubMedGoogle Scholar
  39. Grass GM, Robinson JR (1984) Relationship of chemical structure to corneal penetration and influence of low viscosity solution on ocular bioavailability. J. Pharm. Sci. 73: 1021–1027CrossRefPubMedGoogle Scholar
  40. Gurny R (1981b) Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. Pharm. Acta. Helv. 56: 130–132PubMedGoogle Scholar
  41. Gurny R, Boye T, Ibrahim H (1985) Ocular therapy with nanoparticulate systems for controlled drug delivery. J. Contr. Rel. 2: 353–361CrossRefGoogle Scholar
  42. Gurny R, Peppas NA, Harrington DD, Banker GS (1981a) Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Develop. Ind. Pharm. 7: 1–25CrossRefGoogle Scholar
  43. Gurny R, Taylor D (1980) Development and evaluation of a prolonged acting drug delivery system for the treatment of glaucoma In: Rubinstein MH, Proceedings of the international symposium of the British Pharmaceutical Technology Conference ( London ), Liverpool Solid Dosage Research Unit.Google Scholar
  44. Habib FS, Attia MA, El-Shanawany SM (1985) Ocular bioavailability of pilocarpine hydrochloride in combination with physostigmine salicylate from different gel formulations. Arch. Pharm. Chem.Sci. 13: 33–38Google Scholar
  45. Hamard H, Schmitt C, Plazonnet B, Le Douarec JC (1975) Etude de la pénétration oculaire de la dexaméthasone. In: Demailly P, Hamard H, Luton JP (eds) Oeil et cortisone. Masson et Cie, Paris; 33–83Google Scholar
  46. Harmia T, Kreuter J, Speiser P, Boye T, Gurny R, Kubis A (1986b) Enhancement of the myotic response of rabbits with pilocarpine-loaded polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 33: 187–193CrossRefGoogle Scholar
  47. Harmia T, Speiser P, Kreuter J (1986 a) A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles. J. Microencaps. 3: 3–12Google Scholar
  48. Harmia-Pulkkinen T, Ihantola A, Tuomi A, Kristoffersson E (1986) Nanoencapsulation of timolol by suspension and micelle polymerization. Acta Pharma. Fennica 95: 89–96Google Scholar
  49. Heilman K (1984) Therapeutic systems for local use. Ocular therapeutic systems. In: Therapeutic systems ( 2nd ed). Stuttgart, Georg Thieme Verlag.Google Scholar
  50. Holly FJ, Lemp MA (1973) The precorneal tear film and dry eye syndromes. In: Int. Ophthalmol. Clin. 13 (1) Boston, Little Brown Co.Google Scholar
  51. Huang HS, Schoenwald RD, Lach JL (1983a) Corneal penetration behaviour of ß-blocking agents II: Assessment of barrier contributions. J. Pharm. Sci. 72: 1272–1279CrossRefPubMedGoogle Scholar
  52. Huang HS, Schoenwald RD, Lach JL (1983b) Corneal penetration behavior of n-blocking agents III: In-Vitro–In-Vivo correlations. J. Pharm. Sci. 72: 1279–1281CrossRefPubMedGoogle Scholar
  53. Hui HW, Robinson JR (1985) Ocular delivery of progesterone using a bioadhesive polymer. Int. J. Pharm. 26: 203–213CrossRefGoogle Scholar
  54. Hui HW, Robinson JR (1986). Effect of particle dissolution rate on ocular drug bioavailability. J. Pharm. Sci. 75: 280–287.CrossRefPubMedGoogle Scholar
  55. Jankowska LM, Bar-Ilan A, Maren TH (1986) The relations between ionic and non-ionic diffusion of sulfonamides across the rabbit cornea. Invest. Ophthalmol. Vis. Sci. 27: 29–37.PubMedGoogle Scholar
  56. Kaila T, Salminen L, Huupponen R (1985) Systemic absorption of topically applied ocular timolol. J. Ocular Pharmacol. 1: 79–83CrossRefGoogle Scholar
  57. Katz IM, Berger ET (1979) Effects of iris pigmentation on response of ocular pressure to timolol. Surv. Ophthalmol. 23: 395–398CrossRefPubMedGoogle Scholar
  58. Katz IM, Blackman WM (1977) A soluble sustained-release ophthalmic delivery unit. Am. J. Ophthalmol. 83: 728–734PubMedGoogle Scholar
  59. Kennedy JM, McNamara PE (1981) High peformance liquid chromatographic analysis of pilocarpine hydrochloride, isopilocarpine, pilocarpic acid, and isopilocarpic acid in eye drop preparations. J. Chromatogr. 212: 331–338CrossRefPubMedGoogle Scholar
  60. Klein HZ, Miguel L, Shields MB, Leon J, Duzman E (1985) A dose-response study of piloplex for duration of action. Am. J. Ophthalmol. 99: 23–26PubMedGoogle Scholar
  61. Krause PD (1980) Dipivefrin (DPE): Preclinical and clinical aspects of its development for use in the eye. In: Robinson JR, (ed) Ophthalmic drug delivery systems. Washington, American Pharmaceutical Association, 91–104Google Scholar
  62. Kreienbaum MA, Page DP (1986) Stability of pilocarpine hydrochloride and pilocarpine nitrate ophthalmic solutions submitted by U.S. hospitals. Am. J. Hosp. Pharm. 43: 109–117PubMedGoogle Scholar
  63. Lederer CM, Harold RE (1986) Drop size of commercial glaucoma medications. Amer. J. Ophthalmol. 101: 691–694Google Scholar
  64. Lee VHL (1983) Esterase activities in adult rabbit eyes. J. Pharm. Sci. 72: 239–244CrossRefPubMedGoogle Scholar
  65. Lee VHL, Robinson JR (1982) Disposition of pilocarpine in the pigmented rabbit eye. Int. J. of Pharm. 11: 155–165.CrossRefGoogle Scholar
  66. Lee VHL, Robinson JR (1986) Review: Topical ocular drug delivery: recent developments and future challenges. J. Ocular Pharmacol. 2: 67–108CrossRefGoogle Scholar
  67. Lewis RA, Schoenwald RD, Barfknecht CF, Phelps CD (1986) Aminozolamide gel. A trial of a topical carbonic anhydrase inhibitor in ocular hypertension. Arch. Ophthalmol. 104: 842–849CrossRefPubMedGoogle Scholar
  68. Lewis RA, Schoenwald RD, Eller MG, Barfknecht CF, Phelps CD (1984) Ethoxzolamide Analogue Gel: A topical carbonic anhydrase inhibitor. Arch. Ophthalmol. 102: 1821–1824CrossRefPubMedGoogle Scholar
  69. Lotti VJ, Gautheron PD, Schmitt CJ (1984b) Topical ocular hypotensive activity and ocular penetration of dichlorphenamide sodium in rabbit. Graefe’s Arch. Clin. Exp. Ophthalmol. 222: 13–19CrossRefPubMedGoogle Scholar
  70. Lotti VJ, Le Douarec JC, Stone CA (1984a) Autonomic nervous system: Adrenergic antagonists. In: Sears ML (ed) Pharmacology of the eye. Berlin-Heidelberg. Springer Verlag 248–277Google Scholar
  71. Ludwig A, Van Ooteghem M (1986a) The study of the precorneal dynamics of ophthalmic solutions by fluorophotometry. Pharm. Acta. Helv. 61: 236–240PubMedGoogle Scholar
  72. Ludwig A, Van Ooteghem M (1986b) The influence of the dropsize on the elimination of an ophthalmic solution from the precorneal area of human eyes. Drug Development Ind. Pharm. 12: 2231–2242.CrossRefGoogle Scholar
  73. Lyons JS, Krohn DL (1974) Pilocarpine uptake by pigmented uveal tissue. Am.J. Ophthalmol. 75: 883–885Google Scholar
  74. Maichuk YF (1975a) Ophthalmic drug inserts. Invest. Ophthalmol. 14: 87–90PubMedGoogle Scholar
  75. Maichuk YF (1975b) Soluble ophthalmic drug inserts. The Lancet 1: 173CrossRefGoogle Scholar
  76. Mandell AI, Stentz F, Kitabachi AE (1978) Dipivalyl epinephrine: a new prodrug in the treatment of glaucoma. Ophthalmology 85: 268–275PubMedGoogle Scholar
  77. March WF, Stewart RM, Mandell AI, Bruce LA (1982) Duration of effect of pilocarpine gel. Am. J. Ophthalmol. 100: 1270–1271Google Scholar
  78. Maren TH (1967) Carbonic anhydrase chemistry, physiology and inhibition. Physiol. Rev. 47: 595–781PubMedGoogle Scholar
  79. Maren TH, Jankowska L (1985) Ocular pharmacology of sulfonamides: the cornea as barrier and depot. Current Eye Res. 4: 399–408CrossRefGoogle Scholar
  80. Maren TH, Jankowska L, Sanyal G, Edelhauser HF (1983) The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effect on aqueous humor secretion. Exp. Eye Res. 36: 457–480.CrossRefPubMedGoogle Scholar
  81. Maren TH, Sanyal G (1983a) The activity of sulfonamides and anions against the carbonic anhydrases of animal plants and bacteria. In: George et al (eds), Maren TH, Sanyal G 23, Palo Alto Annual Review Inc.Google Scholar
  82. Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears ML (ed) Pharmacology of the eye. Vol. 69, Springer Verlag, Heidelberg, pp. 19–116CrossRefGoogle Scholar
  83. McClure DA (1975) The effect of a prodrug of epinephrine (dipivaloyl epinephrine) in glaucoma–general pharmacology, toxicology and clinical experiences. In: Higuchi T, Stella V (eds): Pro-drugs as novel drug delivery systems (ACS Symposium 14 ) American Chemical Society, Washington D.C. pp. 224–235.CrossRefGoogle Scholar
  84. McLaughlin MA, Chiou GCY (1985) Review: a synopsis of recent developments in antiglaucoma drugs. J. Ocular Pharm. 1: 101–121.CrossRefGoogle Scholar
  85. Melis-Decerf C, Van Ooteghem M (1979) An in vitro method simulating drug release from viscous eye drops in rabbit and man. J. Pharm. Pharmacol. 31: 12–15CrossRefPubMedGoogle Scholar
  86. Mikkelson TJ (1986) Ophthalmic drug delivery. Pharm. Technol. 8: 90–98Google Scholar
  87. Mindel JS, Smith H, Jacobs M, Kharlamb AB, Friedman AH (1984) Drug reservoirs in topical therapy. Invest. Ophthalmol. Vis. Sci. 25: 346–350.PubMedGoogle Scholar
  88. Mishima S (1981) Clinical pharmacokinetics of the eye. Invest. Ophthalmol. Vis. Sci. 21: 504–541Google Scholar
  89. Mishima S, Gasset A, Klyce SD Jr, Baum JL (1966) Determination of tear volume and tear flow. Invest. Ophthalmol. 5: 264–276PubMedGoogle Scholar
  90. Mitra AK, Mikkelson TJ (1982) Ophthalmic solution buffer systems I. the effect of buffer concentration on the ocular absorption of pilocarpine. Int. J. Pharm. 10: 219–229CrossRefGoogle Scholar
  91. Noordham A, Maat L, Beyerman HC (1981) Quantitative determination of pilocarpine, isopilocarpine, pilocarpine acid and isopilocarpic acid in clinical ophthalmic pilocarpine formulations by reverse phase liquid chromatography. J. Pharm. Sci. 70: 96–97CrossRefGoogle Scholar
  92. Olijnik 0, Stevens J, Wilson CG, Hardy J (1985) Ocular retention of ophthalmic vehicles evaluated in the rabbit by gamma scintigraphy. J. Pharm. Pharmacol. 37: suppl. 118 PGoogle Scholar
  93. Ono S, Hirano H, Obaka K (1971) Degradation in the side chain of cortisol by lens homogenate. Tohoku J. Exp. Med. 104: 171–175CrossRefPubMedGoogle Scholar
  94. Park K, Robinson JR (1982) Polymer binding to epithelial cells. In: Bundgaard H, Bagger Hansen A, Kofod H (eds) Optimization of drug delivery. (Alfred Benzon Symposium 17) Copenhagen 1982,Munksgaard 35–49Google Scholar
  95. Patton TF (1977) Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume. J. Pharm. Sci. 66: 1058–1059CrossRefPubMedGoogle Scholar
  96. Patton TF, Ocular Drug Disposition In: Ophthalmic Drug Delivery Systems, Robinson JR, (ed), American Pharmaceutical Association, Washington D.C. 1980 pp. 28–54.Google Scholar
  97. Patton TF, Robinson JR (1975) Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J. Pharm. Sci. 64: 1312–1316CrossRefPubMedGoogle Scholar
  98. Patton TF, Robinson JR (1976) Quantitative precorneal disposition of topically applied pilocarpine. J. Pharm. Sci. 65: 1295–1301CrossRefPubMedGoogle Scholar
  99. Plazonnet B, Cerdeno A (1976). In-vivo hydrolysis of pilocarpine in the rabbit presented at the 5th European Workshop on Drug Metabolism, Stockholm, June 14–18.Google Scholar
  100. Podos SM, Becker B, Assef C, Hartstein J (1972) Pilocarpine therapy with soft contact lenses. Am. J. Ophthalmol. 73: 336–341PubMedGoogle Scholar
  101. Ponticello GS, Schwam H, Sugrue MF, Baldwin JJ (1986) Thienothiopyran2-sulfonamides: Topically effective water soluble carbonic anhydrase inhibitors. 192nd ACS National Meeting, Anaheim, CA. Sept 7–12.Google Scholar
  102. Prince JH (ed) (1964) The rabbit in eye research. Thomas, SpringfieldGoogle Scholar
  103. Robinson JR, Li VHK (1984) Ocular disposition and bioavailability of pilocarpine from Piloplex and other sustained drug delivery systems. In: Ticho U, and David R, (eds) Recent Advances in Glaucoma. Amsterdam, Elsevier; pp. 231–236Google Scholar
  104. Saettone MF, Giannaccini B, Barattini F, Tellini N (1982) The validity of rabbits for investigations on ophthalmic vehicles: a comparison of four different vehicles containing tropicamide in humans and rabbits. Pharm. Acta. Helv. 57: 47–55PubMedGoogle Scholar
  105. Saettone MF, Giannaccini B, Chetoni P, Galle G, Chiellini E (1984b) Vehicle effect in ophthalmic bioavailability: an evaluation of polymeric inserts containing pilocarpine. J. Pharm. Pharmacol. 36: 229–234.CrossRefPubMedGoogle Scholar
  106. Saettone MF, Giannaccini B, Guiducci A, Savigni P (1986) Semisolid ophthalmic vehicles. III. An evaluation of four organic hydrogels containing pilocarpine. Int. J. of Pharma. 31: 261–270.CrossRefGoogle Scholar
  107. Saettone MF, Giannaccini B, Ravecca S, La Marca F, Tota G (1984a) Polymer effects on ocular bioavailability–the influence of different liquid vehicles on the mydriatic response of tropicamide in humans and in rabbits. Int. J. of Pharm. 20: 187–202.CrossRefGoogle Scholar
  108. Saettone MF, Giannaccini B, Savigni P, Teneggi A (1981) Vehicle effects on ophthalmic bioavailability: the influence of various vehicles on the activity of pilocarpine of rabbit and man. In: Aiäche JM, 1st European Congress of Biopharmacy and Pharmacokinetics, Clermont Ferrand, Vol 1 pp 151–155.Google Scholar
  109. Saettone MF, Giannaccini B, Teneggi A, Savigni P, Tellini N (1982) Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man. J. Pharm. Pharmacol. 34: 464–466CrossRefPubMedGoogle Scholar
  110. Schoenwald RD, Huang HS (1983) Corneal penetration behaviour of p-blocking agents I: Physicochemical factors. J. Pharm. Sci. 72: 1266–1272CrossRefPubMedGoogle Scholar
  111. Schoenwald RD, Ward RL, De Santis LM, Roehrs R.E. (1978) Influence of high-viscosity vehicles on miotic effect of pilocarpine. J. Pharm. Sci. 67: 1280–1283CrossRefPubMedGoogle Scholar
  112. Schwam H, Michelson SR, Sondy JM, Smith RL (1984) L-645,151 a topically effective ocular hypotensive carbonic anhydrase inhibitor: Part I, Biochemistry and metabolism. Invest.Ophthalmol. 25 (suppl): 181Google Scholar
  113. Sears ML (ed) (1981) New directions in ophthalmic research. New Haven, Yale University PressGoogle Scholar
  114. Shell JW (1982) Ocular drug delivery systems–a review. J. Toxicol.-Cut. Ocular Toxicol. 1: 49–63CrossRefGoogle Scholar
  115. Shell JW (1984) Ophthalmic drug delivery systems. Surv. Ophthalmol. 29: 117–128CrossRefPubMedGoogle Scholar
  116. Shell JW, Baker RW (1974) Diffusional systems for controlled release of drugs to the eye. Ann. Ophthalmol. 6: 1037PubMedGoogle Scholar
  117. Sheppard KL, Anderson PS, Graham SL, Schwam H, Smith RL, Sugrue MF (1986) Benzo [b] thiophene-, benzo Lb] furan and indole-2 sulfonamides: new classes of topically effective carbonic anhydrase inhibitors. Presented at the 192nd American Chemical Society meeting, Anaheim, Ca. Sept. 7–12Google Scholar
  118. Sieg JW, Robinson JR (1975) Vehicle effects on ocular bioavailability.l. Evaluation of fluorometholone. J. Pharm. Sci. 64: 931–936CrossRefPubMedGoogle Scholar
  119. Sieg JW, Triplett JW (1980) Precorneal retention of topically instilled micronized particles. J. Pharm. Sci. 69: 863–864CrossRefPubMedGoogle Scholar
  120. Smith RL, Anderson PS, Bicking JB, de Solms J, Graham SL, Hoffman JM, Michelson SR, Robb CM, Schwam ti, Shepard KL, Smith AM, Scholz TH, Sondey JM, Strohmaler KM, Woltersdorf OW Jr (1986) Topical carbonic inhibitor design. Presented at the 22èmes Rencontres Internationales de Chimie Thérapeutique, Clermont Ferrand (France) Sept. 3–5Google Scholar
  121. Stein A, Pinke R, Krupin T, Glabb E, Podos SM, Serle J, Maren TH (1983) The effect of topically administered carbonic anhydrase inhibitors on aqueous humor dynamics in rabbits. Am. J. Ophthalmol. 95: 222–228.CrossRefPubMedGoogle Scholar
  122. Sugaya M, Nagataki S (1978) Kinetics of topical pilocarpine in the human eye. Japan J. Ophthalmol. 22: 127–141Google Scholar
  123. Sugrue MF, Gautheron P, Schmitt C, Viader MP, Conquet P, Smith RL, Share NN, Stone CA (1985) On the pharmacology of L-645,151: A topically effective ocu’ar hypotensive carbonic anhydrase inhibitor. J. Pharmacol. Exp. Therapeutics 232: 534–540Google Scholar
  124. Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor Z (1979a) A clinical trial with piloplex. A new long-acting pilocarpine compound. Preliminary report. Ann. Ophthalmol. 11: 555–561PubMedGoogle Scholar
  125. Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor Z (1979b) Piloplex, a new long-acting pilocarpine polymer salt. A. Long-term study. Br.J. Ophthalmol 63: 45–47CrossRefGoogle Scholar
  126. Urbanyi T, Piedmont A, Willis E (1976) Simultaneous determination of pilocarpine and isopilocarpine in pharmaceutical preparations by liquid chromatography. J. Pharm. Sci. 65: 257–260CrossRefPubMedGoogle Scholar
  127. Urquhart J, (1980) Development of the OCUSERT® pilocarpine ocular therapeutic systems–a case history in ophthalmic product development In: Ophthalmic Drug Delivery Systems, Robinson JR, (ed), American Pharmaceutical Association, Washington D.C. pp. 105–118Google Scholar
  128. Urtti A (1985) Pilocarpine release from matrices of alkyl half-esters of poly(vinyl methyl ether/maleic anhydride). Int. J. Pharm. 26: 45–55CrossRefGoogle Scholar
  129. Urtti A, Juslin M, Miinalainen O (1985a) Pilocarpine release from hydroxypropyl-cellulose-polyvinylpyrrolidone matrices. Int. J. Pharm. 25: 165–178CrossRefGoogle Scholar
  130. Urtti A, Salminen L, Miinalainen O (1985b) Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int. J. Pharm. 23: 147–161CrossRefGoogle Scholar
  131. Vadnere M, Amidon G, Lindenbaum S, Haslam JL (1984) Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int. J. Pharm. 22: 207–218CrossRefGoogle Scholar
  132. Van Ooteghem M (1983) Viskosität. In: Dolder R, Skinner FS (eds) Ophthalmika, Stuttgart. Wissenschaftliche Verlagsgesellschaft 372–384Google Scholar
  133. Vareilles P, Schmitt C, Lotti VJ, Le Douarec JC (1978) Etude expérimentale du timolol: un nouvel hypotenseur oculaire. J. Fr. Ophtalmol. 12: 717–721Google Scholar
  134. Vareilles P, Silverstone D, Plazonnet B, Le Douarec JC, Sears ML, Stone CA (1977) Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest. Ophthalmol. Vis. Sci. 16: 987–996PubMedGoogle Scholar
  135. Vedani A, Meyer EF (1984) Structure-activity relationships of sulfonamide drugs and human carbonic anhydrase C: Modeling of inhibitor molecules into the receptor site of the enzyme with an interactive computer graphics display. J. Pharm. Sci. 73: 352–358CrossRefPubMedGoogle Scholar
  136. Waltman SR,Kaufman HE (1970) Use of hydrophilic contact lenses to increase ocular penetration of topical drugs. Invest. Ophthalmol. 9: 250–255Google Scholar
  137. Wei CP, Anderson JA, Leopold I (1978) Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest. Ophthalmol. Vis. Sci. 17: 315–321.PubMedGoogle Scholar
  138. Wilson CG, Olijnik O, Hardy JG (1983) Precorneal drainage of polyvinyl alcohol solutions in the rabbit assessed by gamma scintigraphy. J. Pharm. Pharmacol. 35: 451–454.CrossRefPubMedGoogle Scholar
  139. Wood Rid, Li VHK, Kreuter J, Robinson JR (1985) Ocular disposition of poly-hexyl-2-cyano 3–14C acrylate nanoparticles in the albino rabbit. Int. J. Pharm. 23: 175–183CrossRefGoogle Scholar
  140. Yakovlev AA, Lenkevich MM (1966) Use of pilocarpine impregnated alcohol films in the treatment of glaucomatous patients. Vestn. Oftal. 79: 40–42Google Scholar
  141. Zaki I, Fitzgerald P, Hardy JG, Wilson CG (1986) A comparison on the effect of viscosity on the precorneal residence of solutions in rabbit and man. J. Pharm. Pharmacol. 38: 463–466CrossRefPubMedGoogle Scholar
  142. Zimmermann TJ, Kaufman HE (1977) Timolol: a B-adrenergic blocking agent for the treatment of glaucoma. Arch. Ophthalmol. 95: 601–604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • B. Plazonnet
    • 1
  • J. Grove
    • 1
  • M. Durr
    • 1
  • C. Mazuel
    • 1
  • M. Quint
    • 1
  • A. Rozier
    • 1
  1. 1.Merck Sharp & Dohme-ChibretCentre de RechercheRiomFrance

Personalised recommendations