Advertisement

Number Theory pp 229-250 | Cite as

Rational Desingularization of a Curve Defined Over a Finite Field

  • A. T. Vasquez
Conference paper

Zusammenfassung

In 1983, the IEEE’s “paper of the year” in Information Theory was Modular Curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound [18]—its authors are Tsfasman, Vladut, and Zink. As the title suggests, the paper established the existence of families of codes with asymptotically “better” parameters than had been thought possible.

Keywords

Prime Ideal Maximal Ideal Algebraic Curf Valuation Ring Minimal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Artin. Elements of Algebraic Geometry. Notes. Courant Institute of Mathematical Sciences, NYU, 1955.Google Scholar
  2. [2]
    G. A. Bliss. Algebraic Functions. Dover Publications, Inc., 1966.MATHGoogle Scholar
  3. [3]
    D. Le Brigand & J. J. Risler. Algorithme de Brill-Noether et codes de Goppa. Bull. Soc. Math. France 116 (1988), 231–253.MathSciNetMATHGoogle Scholar
  4. [4]
    C. Chevalley. Introduction to the theory of algebraic functions of one variable, Mathematical Surveys 6. American Mathematical Society, 1951.CrossRefMATHGoogle Scholar
  5. [5]
    C. Chevalley. Fundamental concepts of algebra, Pure and applied mathematics; a series of monograghs and textbooks 7. Academic Press, 1956.MATHGoogle Scholar
  6. [6]
    W. Fulton. Algebraic Curves. Benjamin, 1969.MATHGoogle Scholar
  7. [7]
    V. D. Goppa. Codes on algebraic curves. Soviet Math. Dokl. 24 #1 (1981), 170–172.MATHGoogle Scholar
  8. [8]
    V. D. Goppa. Geometry and Codes. Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers, Dordrecht, the Netherlands, 1988.CrossRefMATHGoogle Scholar
  9. [9]
    R. Harts Horne. Algebraic Geometry, Graduate Texts in Mathematics 52. Springer-Verlag, 1977.CrossRefGoogle Scholar
  10. [10]
    S. Lang. Introduction to Algebraic Geometry, Interscience Tracts in Pure and Applied Mathematics 5. Interscience Publishers, Inc., 1958.MATHGoogle Scholar
  11. [11]
    S. Lang.Algebra. Addison-Wesley, 2nd edn., 1984.MATHGoogle Scholar
  12. [12]
    M.D. Fried & M. Jarden. Field Arithmetic, Ergebn. der Math, und ihrer Grenz.: 3. Folge 11. Springer-Verlag, 1986.CrossRefMATHGoogle Scholar
  13. [13]
    M.F. Atiyah & I.G. MacDonald. Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Addison-Wesley, 1969.MATHGoogle Scholar
  14. [14]
    M. Pohst & H. Zassenhaus. Algorithmic algebraic number theory. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1989.CrossRefMATHGoogle Scholar
  15. [15]
    A. Seidenberg. Elements of the Theory of Algebraic Curves. Addison-Wesley, 1969.Google Scholar
  16. [16]
    J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer-Verlag, 1986.CrossRefMATHGoogle Scholar
  17. [17]
    B. M. Trager. Integration of Algebraic Functions. Ph.D. thesis, MIT, 1984.Google Scholar
  18. [18]
    M. A. Tsfasman, S. G. Vladut, & Th. Zink. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr. 109 (1982), 21–28.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    B. L. van der Waerden. Modern Algebra. Frederick Ungar Publishing Co., revised english edition edn., 1953.Google Scholar
  20. [20]
    J. H. van Lint & G. van der Geer. Introduction to Coding Theory and Algebraic Geometry, DMV seminar Bd. 12. Birkhäuser Verlag, 1988.CrossRefMATHGoogle Scholar
  21. [21]
    S. G. Vléduts & Yu. I. Manin. Linear codes and modular curves. J. of Sov. Math. 30 #6 (1985), 2611–2643.CrossRefMATHGoogle Scholar
  22. [22]
    R. J. Walker. Algebraic Curves. Princeton University Press, 1950.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. T. Vasquez
    • 1
  1. 1.Mathematics Department, Graduate School and University CenterCity University of New YorkNew YorkUSA

Personalised recommendations