Skip to main content

Abstract

In this Chapter, smart antenna systems are briefly reviewed. With the fast growth of wireless communication in recent years, smart antennas attract much attention. Smart antennas have the potential to improve system performance in terms of capacity, coverage and quality of service. Accurate and computationally efficient estimations of direction-of-arrival are critical factors in designing a smart antenna system. The weighting vectors obtained by adaptive algorithms can be used to synthesize desired pattern. Applications of smart antenna systems including wideband arrays and position location techniques are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hata, “Empirical formula for propagation loss in land mobile radio sercvices,” IEEE Trans. Veh. Technol., vol.29, no.3, pp.317–325, Aug. 1980.

    Article  MathSciNet  Google Scholar 

  2. J. Walfisch and H. L. Bertoni, “A theoretical model for UHF propagation in urban environments,” IEEE Trans. Antennas Propagat., vol.36, pp.1788–1796, Dec. 1988.

    Article  Google Scholar 

  3. E. Damosso and L. Correia, “Digital mobile radio towards future generation systems,” COST231 Final Rep., European Commission, pp.474, 1999.

    Google Scholar 

  4. F. Ikegami, S. Yoshida, T. Takeuchi, and M. Umehira, “Propagation factors controlling mean field strength on urban streets,” IEEE Trans. Antennas Propagat., vol.32, pp.822–829, Aug. 1984.

    Article  Google Scholar 

  5. T. C. Becker, M. Dottling, and W. Wiesbeck, “Fast determination of channel impulse responses by 3D wave propagation modeling,” IEEE Int. Conf. Converg. Technol. Appl., vol.1, pp.287–291, 1996.

    Google Scholar 

  6. A. Medeisis and A. Kajackas, “On the use of the universal Okumura-Hata propagation prediction model in rural areas,” Proc. IEEE Veh. Technol. Conf., vol.3, pp.1815–1818, Tokyo, 2000.

    Google Scholar 

  7. J. W. McJown and R. L. Hamilton Jr., “Ray-tracing as a design tool for radio networks,” IEEE Network Mag, vol.5, no.6, pp.27–30, Nov. 1991.

    Article  Google Scholar 

  8. Z. Ji, B. H. Li, H. X. Wang, H. Y. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propagat Mag., vol.43, no.2, pp.41–49, Apr. 2001.

    Article  Google Scholar 

  9. J. Capon, “High resolution frequency wave number spectrum analysis,” Proc.IEEE, vol.57, pp.1408–1418, Aug. 1969.

    Article  Google Scholar 

  10. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propagat., vol.34, no.3, pp.281–290, Mar. 1986.

    Article  Google Scholar 

  11. A. J. Barabell, “Improving the resolution performance of eigenstructure-based direction finding algorithms,” Proc. IEEE Int. Conf. Acoust, Speech, Signal Process., pp.336–339, 1983.

    Google Scholar 

  12. W. A. Gardner, “Simplification of MUSIC and ESPRIT by exploitation of cyclostationary,” Proc.IEEE, vol.76, pp.845–847, July 1988.

    Article  Google Scholar 

  13. R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol.37, no.7, pp.984–995, July 1989.

    Article  Google Scholar 

  14. I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Trans. Acoust., Speech, Signal Process., vol.36, no.10, pp.1553–1560, Oct. 1988.

    Article  MATH  Google Scholar 

  15. M. Hirakawa, H. Tsuji, and A. Sano, “Computationally efficient DOA estimation based on linear prediction with Capon method,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol.5, pp.3009–3012, 2001.

    Google Scholar 

  16. L. R. Dandekar, L. Hao, and G. Xu, “Experimental study of mutual coupling compensation in smart antenna applications,” IEEE Trans. Wireless Commun., vol.1, no.3, pp.480–487, July 2002.

    Article  Google Scholar 

  17. D. Segovia-Vargas, R. Martin-Cuerdo, and M. Sierra-Perez, “Mutual coupling effects correction in microstrip arrays for direction-of-arrival(DOA) estimation,” Proc. Inst. Elect Eng., pt.H, vol.149, no.2, pp.113–118, Apr. 2002.

    Google Scholar 

  18. G. V. Tsoulos, “Smart antennas for mobile communication systems: benefits and challenges,” J. Electron. Commun. Eng., vol.11, pp.84–94, Apr. 1999.

    Article  Google Scholar 

  19. B. Yang, C. Zhigang, and K. B. Letaief, “Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems,” IEEE Trans. Commun., vol.49, pp.1977–1987, Nov. 2001.

    Article  MATH  Google Scholar 

  20. D. Cassioli, M. Z. Win, and A. R. Molisch, “The ultra-wide bandwidth indoor channel: from statistical model to simulations,” IEEE J. Select Areas Commun., vol.20, pp.1247–1257 Aug. 2002.

    Article  Google Scholar 

  21. R. Price and P. E. Green Jr., “A communication technique for multipath channels,” Proc.IRE, vol.46, pp.555–570, Mar. 1958.

    Article  Google Scholar 

  22. P. S. Ray, “A novel pulse TO A analysis technique for radar identification,” IEEE Trans. Aerospace Electron. Syst., vol.34, pp.716–721, July 1998.

    Article  Google Scholar 

  23. D. H. Shin and T. K. Sung, “Comparisons of error characteristics between TOA and TDOA positioning,”IEEE Trans. Aerospace Electron. Syst., vol.38, pp.307–311, Jan. 2002.

    Article  Google Scholar 

  24. J. Caffery Jr. and G. L. Stuber, “Subscriber location in CDMA cellular networks,” IEEE Trans. Veh. Technol., vol.47, no.2, pp.406–416, May 1998.

    Article  Google Scholar 

  25. S. S. Woo, H. R. You, and J. S. Koh, “The NLOS mitigation technique for position location using IS-95 CDMA networks,” Proc. IEEE Veh. Technol. Conf., vol.4, pp.2556–2560, Sept. 2000.

    Google Scholar 

  26. C. Li and W. Huang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Trans. Wireless Commun., vol.1, no.3, pp.439–447, July 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiang, JF., Wu, CW. (2004). Introduction to Smart Antenna Systems. In: Novel Technologies for Microwave and Millimeter — Wave Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4156-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4156-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5401-5

  • Online ISBN: 978-1-4757-4156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics