Well Ordered Sets

  • Yiannis N. Moschovakis
Part of the Undergraduate Texts in Mathematics book series (UTM)


A well ordered set1 is a poset
$$U = (Field(U),{ \leqslant _U})$$
where U is a wellordering on Field(U), i.e. a linear (total) ordering on Field(U) such that every non-empty XField(U) has a least member. Associated with U is also its strict ordering < U ,
$$x < y \Leftrightarrow x{ < _U}y{ \Leftrightarrow _{df}}x{ \leqslant _U}y\& x \ne y$$


Limit Point Monotone Mapping Initial Segment Expansive Mapping Successor Point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Yiannis N. Moschovakis
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations