Iterated and Sequential Importance Sampling

  • Christian P. Robert
  • George Casella
Part of the Springer Texts in Statistics book series (STS)


This chapter gives an introduction to sequential simulation methods, a collection of algorithms that build both on MCMC methods and importance sampling, with importance sampling playing a key role. We will see the relevance of importance sampling and the limitations of standard MCMC methods in many settings, as we try to make the reader aware of important and ongoing developments in this area. In particular, we present an introduction. to Population Monte Carlo (Section 14.4), which extends these notions to a more general case, and subsumes MCMC methods


Particle Filter Importance Sampling Importance Weight MCMC Method Target Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Goldfeld, S. and Quandt, R. (1973). A Markov model for switching regressions. J. Econometrics, 1: 3–16.zbMATHCrossRefGoogle Scholar
  2. Albert, J. and Chib, S. (1993). Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. J. Business Economic Statistics, 1:1-15.Google Scholar
  3. McCulloch, R. and Tsay, R. (1994). Statistical analysis of macroeconomic time series via Markov switching models. J. Time Series Analysis, 155: 523–539.MathSciNetCrossRefGoogle Scholar
  4. Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81: 115–131.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov mixture models. J. Econometrics, 75: 79–97.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Billio, M., Monfort, A., and Robert, C. (1998). The simulated likelihood ratio method. Technical Report 9821, CREST, INSEE, Paris.Google Scholar
  7. Juang, B. and Rabiner, L. (1991). Hidden Markov models for speech recognition. Technometrics, 33: 251–272.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Celeux, G. and Diebolt, J. (1992). A classification type EM algorithm for the mixture problem. Stochastics and Stochastics Reports, 41: 119–134.MathSciNetzbMATHGoogle Scholar
  9. Guihenneuc-Jouyaux, C., Richardson, S., and Lasserre, V. (1998). Convergence assessment in latent variable models: apllication to longitudinal modelling of a marker of HIV progression. In Robert, C., editor, Discretization and MCMC Convergence Assessment, volume 135, chapter 7, pages 147–160. Springer-Verlag, New York. Lecture Notes in Statistics.Google Scholar
  10. Churchill, G. (1995). Accurate restoration of DNA sequences (with discussion). In C. Gatsonis, J.S. Hodges, R. K. and Singpurwalla, N., editors, Case Studies in Bayesian Statistics, volume 2, pages 90–148. Springer-Verlag, New York.CrossRefGoogle Scholar
  11. Churchill, G. (1989). Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol., 51: 79–94.MathSciNetzbMATHGoogle Scholar
  12. Cocozza-Thivent, C. and Guédon, Y. (1990). Explicit state occupancy modeling by hidden semi-Markov models: application of Derin’s scheme. Comput. Speech Lang., 4: 167–192.CrossRefGoogle Scholar
  13. Juang, B. (1984). On the hidden Markov model and dynamic time warping for speech recognition–a unified view. BellTech, 63: 1213–1243.MathSciNetzbMATHGoogle Scholar
  14. Decoux, C. (1997). Estimation de modèles de semi-chaînes de Markov cachées par échantillonnage de Gibbs. Revue de Statistique Appliquée, 45: 71–88.Google Scholar
  15. Cruet, M., Philippe, A., and Robert, C. (1999). MCMC control spreadsheets for exponential mixture estimation. J. Comput. Graph. Statist., 8: 298–317.Google Scholar
  16. Guihenneuc-Jouyaux, C. and Richardson, S. (1996). Modèle de Markov avec erreurs de mesure: approche bayésienne et application au suivi longitudinal des lymphocytes t4. In Biométrie et Applications Bayésiennes. Economica, Paris.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Christian P. Robert
    • 1
  • George Casella
    • 2
  1. 1.CEREMADEUniversité Paris DauphineParis Cedex 16France
  2. 2.Department of StatisticsUniversity of FloridaGainesvilleUSA

Personalised recommendations