In all living cells, ion channels are required to regulate the membrane potential and intracellular ion concentrations. Functional ion channels allow movements of cations or anions across the membrane, which subsequently may influence a variety of cellular processes, such as proliferation, excitability, migration, apoptosis, secretion and others. Ion channels are specialized membrane proteins that span the plasma membrane. They form hydrophilic pores through which ions flow from one side of the membrane to the other down their electrochemical gradient.


Microglial Cell Regulatory Volume Decrease Proton Channel Flufenamic Acid Human Microglia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson NS, Robertson GA, Ganetzky B (1991). A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555.PubMedCrossRefGoogle Scholar
  2. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000). A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142.PubMedCrossRefGoogle Scholar
  3. Bene L, Szöllösi J, Balazs M, Matyus L, Gaspar R, Ameloot M, Dale RE, Damjanovich S (1997). Major histocompatibility complex class I protein conformation altered by transmembrane potential changes. Cytometry 27:353–357.PubMedCrossRefGoogle Scholar
  4. Boucsein C, Kettenmann H, Nolte C (2000). Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12:2049–2058.PubMedCrossRefGoogle Scholar
  5. Brockhaus J, Ilschner S, Banati RB, Kettenmann H (1993). Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 13:4412–4421.PubMedGoogle Scholar
  6. Brown H, Kozlowski R, Perry H (1998). The importance of ion channels for macrophage and microglial activation in vitro. Glia 22:94–97.PubMedCrossRefGoogle Scholar
  7. Caggiano AO, Kraig RP (1998). Prostaglandin E2 and 4-aminopyridine prevent the lipopolysaccharide-induced outwardly rectifying potassium current and interleukin-1β production in cultured rat microglia. J Neurochem 70:2357–2368.PubMedCrossRefGoogle Scholar
  8. Catipovic B, Talluri G, Oh J, Wei T, Su XM, Johansen TE, Edidin M, Schneck JP (1994). Analysis of the structure of empty and peptide-loaded major histocompatibility complex molecules at the cell surface. J Exp Med 180:1753–1761.PubMedCrossRefGoogle Scholar
  9. Cayabyab FS, Khanna R, Jones OT, Schlichter LC (2000). Suppression of the rat microglia Kv 1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci 12:1949–1960.PubMedCrossRefGoogle Scholar
  10. Chesler M (1990). The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427.PubMedCrossRefGoogle Scholar
  11. Chesler M, Kaila K (1992). Modulation of pH by neuronal activity. Trends Neurosci 15:396–402.PubMedCrossRefGoogle Scholar
  12. Chung S, Jung W, Lee MY (1999). Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett 262:121–124.PubMedCrossRefGoogle Scholar
  13. Colton CA, Gilbert DL (1993). Microglia, an in vivo source of reactive oxygen species in the brain. Adv Neurol 59:321–326.PubMedGoogle Scholar
  14. Colton CA, Jia M, Li MX, Gilbert DL (1994). K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 266:C1650–C1655.PubMedGoogle Scholar
  15. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1985). Voltage-dependent ion channels in T- lymphocytes. J Neuroimmunol 10:71–95.PubMedCrossRefGoogle Scholar
  16. DeCoursey TE, Cherny VV (1994). Voltage-activated hydrogen ion currents. J Membr Biol 141:203–223.PubMedGoogle Scholar
  17. DeCoursey TE, Grinstein S (1999). Ion channels and carriers in leukocytes. In: Inflammation: Basic principles and clinical correlates. JI Gallin and R Snyderman, eds. Lippincott Williams & Wilkins, New York, pp. 639–659.Google Scholar
  18. Draheim HJ, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK (1999). Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience 89:1379–1390.PubMedCrossRefGoogle Scholar
  19. Deutsch C, Chen LQ (1993). Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci USA 90:10036–10040.PubMedCrossRefGoogle Scholar
  20. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP (1990). Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J Immunol 144:4841–4850.PubMedGoogle Scholar
  21. Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997). Molecular identification of a volume-regulated chloride channel. Nature 390:417–421.PubMedCrossRefGoogle Scholar
  22. Eder C, DeCoursey TE (2001). Voltage-gated proton channels in microglia. Prog Neurobiol, 64:277–305.PubMedCrossRefGoogle Scholar
  23. Eder C, Fischer HG, Hadding U, Heinemann U (1995a). Properties of voltage-gated currents of microglia developed with macrophage colony-stimulating factor. Pflügers Arch 430:526–533.PubMedCrossRefGoogle Scholar
  24. Eder C, Fischer HG, Hadding U, Heinemann U (1995b). Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colonystimulating factor. J Membr Biol 147:137–146.PubMedGoogle Scholar
  25. Eder C, Heinemann U (1996). Proton modulation of outward K+ currents in interferon-γactivated microglia. Neurosci Lett 206:101–104.PubMedCrossRefGoogle Scholar
  26. Eder C, Klee R, Heinemann U (1996). Blockage of voltage-gated outward K+ currents of ramified murine microglia by scorpion peptide toxins. Neurosci Lett 219:29–32, 1996.PubMedCrossRefGoogle Scholar
  27. Eder C, Klee R, Heinemann U (1997a). Distinct soluble astrocytic factors induce expression of outward K+ currents and ramification of brain macrophages. Neurosci Lett 226:147–150.PubMedCrossRefGoogle Scholar
  28. Eder C, Klee R, Heinemann U (1997b). Pharmacological properties of Ca2+-activated K+ currents of ramified murine brain macrophages. Naunyn Schmiedeberg’s Arch Pharmacol 356:233–239.CrossRefGoogle Scholar
  29. Eder C, Klee R, Heinemann U (1998). Involvement of stretch-activated Cl- channels in ramification of murine microglia. J Neurosci 18:7127–7137.PubMedGoogle Scholar
  30. Eder C, Schilling T, Heinemann U, Haas D, Hailer N, Nitsch R (1999). Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 11:4251–4261.PubMedCrossRefGoogle Scholar
  31. Fischer HG, Eder C, Hadding U, Heinemann U (1995). Cytokine-dependent K+ channel profile of microglia at immunologically defined functional states. Neuroscience 64:183–191.PubMedCrossRefGoogle Scholar
  32. Gallin EK (1991). Ion channels in leukocytes. Physiol Rev 71:775–811.PubMedGoogle Scholar
  33. Garber SS, Cahalan MD (1997). Volume-regulated anion channels and the control of a simple cell behavior. Cell Physiol Biochem 7:229–241.CrossRefGoogle Scholar
  34. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG (1990). Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci USA 87:9411–9415.PubMedCrossRefGoogle Scholar
  35. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994). Pharmacological characterization of five cloned voltage-gated K+ channels, types Kvl.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234.PubMedGoogle Scholar
  36. Gründer S, Thiemann A, Pusch M, Jentsch TJ (1992). Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759–762.PubMedCrossRefGoogle Scholar
  37. Gschwentner M, Nagl UO, Woll E, Schmarda A, Ritter M, Paulmichl M (1995). Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels. Pflügers Arch 430:464–470.PubMedCrossRefGoogle Scholar
  38. Hahn J, Jung W, Kim N, Uhm DY, Chung S (2000). Characterization and regulation of rat microglial Ca2+ release-activated Ca2+ (CRAC) channel by protein kinases. Glia 31:118–124.PubMedCrossRefGoogle Scholar
  39. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391, 85–100.PubMedCrossRefGoogle Scholar
  40. Heinemann U, Eder C (1997). Control of neuronal excitability. In: Epilepsy: A comprehensive textbook. (Eds.: Engel J Jr., Pedley TA), pp. 237–250, Lippincott-Raven Publishers, Philadelphia.Google Scholar
  41. Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986). Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. In: Advances in Neurology/Basic mechanism of the epilepsies (Eds.: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ), pp. 641–661, Raven Press, New York.Google Scholar
  42. Henderson LM, Chappell JB, Jones OTG (1987). The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329.PubMedGoogle Scholar
  43. Henderson LM, Chappell JB, Jones OTG (1988). Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem J 255:285–290.PubMedGoogle Scholar
  44. Henderson LM, Banting G, Chappell JB (1995). The arachidonate-activable [sic], NADPH oxidase-associated H+ channel: evidence that gp91-phox functions as an essential part of the channel. J Biol Chem 270:5909–5916.PubMedCrossRefGoogle Scholar
  45. Ilschner S, Nolte C, Kettenmann H (1996). Complement factor C5a and epidermal growth factor trigger the activation of outward potassium currents in cultured murine microglia. Neuroscience 73:1109–1120.PubMedCrossRefGoogle Scholar
  46. Ilschner S, Ohlemeyer C, Gimpl G, Kettenmann H (1995). Modulation of potassium currents in cultured murine microglial cells by receptor activation and intracellular pathways. Neuroscience 66:983–1000.PubMedCrossRefGoogle Scholar
  47. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997). A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656.PubMedCrossRefGoogle Scholar
  48. Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997). hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018.PubMedCrossRefGoogle Scholar
  49. Kerschbaum HH, Cahalan MD (1999). Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283:836–839.PubMedCrossRefGoogle Scholar
  50. Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg GW (1990). Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26:278–287.PubMedCrossRefGoogle Scholar
  51. Klee R, Heinemann U, Eder C (1998). Changes in proton currents in murine microglia induced by cytoskeletal disruptive agents. Neurosci Lett 247:191–194.PubMedCrossRefGoogle Scholar
  52. Klee R, Heinemann U, Eder C (1999). Voltage-gated proton currents in microglia of distinct morphology and functional state. Neuroscience 91:1415–1424.PubMedCrossRefGoogle Scholar
  53. Korotzer AR, Cotman CW (1992). Voltage-gated currents expressed by rat microglia in culture. Glia 6:81–88.PubMedCrossRefGoogle Scholar
  54. Kotecha SA, Schlichter LC (1999). A Kv 1.5 to Kv 1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19:10680–10693.PubMedGoogle Scholar
  55. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133.PubMedCrossRefGoogle Scholar
  56. Küst BM, Biber K, van Calker D, Gebicke-Haerter PJ (1999). Regulation of K+ channel mRNA expression by stimulation of adenosine A2a-receptors in cultured rat microglia. Glia 25:120–130.PubMedCrossRefGoogle Scholar
  57. Lewis RS, Cahalan MD (1995). Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653.PubMedCrossRefGoogle Scholar
  58. Love S (1999). Oxidative stress in brain ischemia. Brain Pathol 9:119–131.PubMedCrossRefGoogle Scholar
  59. Lowenthal A, Levy R (1999). Essential requirement of cytosolic phospholipase A2 for activation of the H+ channel in phagocyte-like cells. J Biol Chem 274:21603–21608.PubMedCrossRefGoogle Scholar
  60. McLarnon JG, Sawyer D, Kim SU (1995). Cation and anion unitary ion channel currents in cultured bovine microglia. Brain Res 693:8–20.PubMedCrossRefGoogle Scholar
  61. McLarnon JG, Xu R, Lee YB, Kim SU (1997). Ion channels of human microglia in culture. Neuroscience 78:1217–1228.PubMedCrossRefGoogle Scholar
  62. Nörenberg W, Appel K, Bauer J, Gebicke-Haerter PJ, Illes P (1993). Expression of an outwardly rectifying K+ channel in rat microglia cultivated on teflon. Neurosci Lett 160:69–72.PubMedGoogle Scholar
  63. Nörenberg W, Cordes A, Blöhbaum G, Fröhlich R, Illes P (1997). Coexistence of purinoand pyrimidinoceptors on activated rat microglial cells. Brit J Pharmacol 121:1087–1098.CrossRefGoogle Scholar
  64. Nörenberg W, Gebicke-Haerter PJ, Illes P (1992). Inflammatory stimuli induce a new K+ outward current in cultured rat microglia. Neurosci Lett 147:171–174.PubMedCrossRefGoogle Scholar
  65. Nörenberg W, Gebicke-Haerter PJ, Illes P (1994a). Voltage-dependent potassium channels in activated rat microglia. J Physiol 475:15–32.PubMedGoogle Scholar
  66. Nörenberg W, Illes P, Gebicke-Haerter PJ (1994b). Sodium channel in isolated human brain macrophages (microglia). Glia 10:165–172.PubMedCrossRefGoogle Scholar
  67. Rauer H, Grissmer S (1996). Evidence for an internal phenylalkylamine action on the voltage-gated potassium channel Kv 1.3. Mol Pharmacol 50:1625–1634.PubMedGoogle Scholar
  68. Schilling T, Quandt FN, Cherny VV, Zhou W, Heinemann U, DeCoursey TE, Eder C (2000). Upregulation of Kvl.3 K+ channels in microglia deactivated by TGF-β. Am J Physiol (Cell Physiol) 279:C1123–C1134.Google Scholar
  69. Schlichter LC, Sakellaropoulos G, Ballyk B, Pennefather PS, Phipps DJ (1996). Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells. Glia 17:225–236.PubMedCrossRefGoogle Scholar
  70. Schmidtmayer J, Jacobsen C, Miksch G, Sievers J (1994). Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: Membrane currents. Glia 12:259–267.PubMedCrossRefGoogle Scholar
  71. Sievers J, Schmidtmayer J, Parwaresch R (1994). Blood monocytes and spleen macrophages differentiate into microglia-like cells when cultured on astrocytes. Anat Anz 176:45–51.CrossRefGoogle Scholar
  72. Silei V, Fabrizi C, Venturini G, Salmona M, Bugiani O, Tagliavini F, Lauro GM (1999). Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res 818:168–170.PubMedCrossRefGoogle Scholar
  73. Sontheimer H (1994). Voltage-dependent ion channels in glial cells. Glia11:156–172.PubMedCrossRefGoogle Scholar
  74. Spranger M, Kiprianova I, Krempien S, Schwab S (1998). Reoxygenation increases the release of reactive oxygen intermediates in murine microglia. J Cereb Blood Flow Metab 18:670–674.PubMedCrossRefGoogle Scholar
  75. Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN (1992). Mechanism of spreading depression: a review of recent findings and a hypothesis. Can J Physiol and Pharmacol 70:S248–254.CrossRefGoogle Scholar
  76. Streit WJ, Walter SA, Pennell NA (1999). Reactive microgliosis. Prog Neurobiol 57:563–581.PubMedCrossRefGoogle Scholar
  77. Visentin S, Agresti C, Patrizio M, Levi G (1995). Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-γ. J Neurosci Res 42:439–451.PubMedCrossRefGoogle Scholar
  78. Visentin S, Levi G (1997). Protein kinase C involvement in the resting and interferon-γinduced K+ channel profile of microglial cells. J Neurosci Res 47:233–241.PubMedCrossRefGoogle Scholar
  79. Visentin S, Levi G (1998). Arachidonic acid-induced inhibition of microglial outwardrectifying K+ current. Glia 22:1–10.PubMedCrossRefGoogle Scholar
  80. Yoo AS, McLarnon JG, Xu RL, Lee YB, Krieger C, Kim SU (1996). Effects of phorbol ester on intracellular Ca2+ and membrane currents in cultured human microglia. Neurosci Lett 218:37–40.PubMedCrossRefGoogle Scholar
  81. Zhou W, Cayabyab FS, Pennefather PS, Schlichter LC, DeCoursey TE (1998). HERG-like K+ channels in microglia. J Gen Physiol 111:781–794.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Claudia Eder

There are no affiliations available

Personalised recommendations