Estimates of Whole Lake Metabolism: Hypolimnetic Oxygen Deficits and Carbon Dioxide Accumulation

  • Robert G. Wetzel
  • Gene E. Likens


Measurements of the supply of organic matter to aquatic ecosystems are complex and require an elaborate research program continuing over at least a year. The inputs from the products of photosynthesis of autotrophic phytoplankton and of littoral flora must be evaluated, as well as the inputs from allochthonous organic matter entering the aquatic ecosystem from the atmosphere and from the drainage basin.


Ammonium Bicarbonate Respiratory Quotient Water Stratum Oxygen Deficit Meromictic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Einsele, W. 1941. Die Umsetzung von zugeführtem, anorganischen Phosphat im eutrophen See und ihre Rückwirkungen auf seinen Gesamthaushalt. Zeitsch. f. Fischerei 39: 407–488.Google Scholar
  2. Godshalk, G.L. and R.G. Wetzel. 1977. Decomposition of macrophytes and the metabolism of organic mater in sediments. pp. 258–264. In: H.L. Golterman, Editor. Interactions between Sediments and Freshwater. Dr. W. Junk B.V., The Hague.Google Scholar
  3. Hutchinson, G.E. 1957. A Treatise on Limnology. Vol. I. Geography, Physics, and Chemistry, Wiley, New York. 1015 pp.Google Scholar
  4. Ohle, W. 1934. Chemische und physikalische Untersuchungen norddeutscher Seen. Arch. Hydrobiol. 26: 386–464, 584–658.Google Scholar
  5. Ohle, W. 1952. Die hypolimnische Kohlendioxyd-Akkumulation als productions-biologischer Indikator. Arch. Hydrobiol. 46: 153–285.Google Scholar
  6. Ohle W. 1956. Bioactivity, production, and energy utilization of lakes. Limnol. Oceanogr. 1: 139-. 149.Google Scholar
  7. Redfield, A.C. 1958. The biological control of chemical factors in the environment. Amer. Sci. 46: 206–226.Google Scholar
  8. Rich, P.H. 1975. Benthic metabolism of a soft water lake. Verh. Int. Ver. Limnol. 19: 1023–1028.Google Scholar
  9. Rich, P.H. 1983. Differential CO2 and Oz benthic community metabolism in a softwater lake. J. Fish. Res. Bd. Canada 36: 1377–1389.Google Scholar
  10. Rich, P.H. 1984. Further analysis of respiration in a North American lake ecosystem. Verh. Int. Verein. Limnol. 22: 542–548.Google Scholar
  11. Rich, P.H. and R.G. Wetzel. 1978. Detritus in the lake ecosystem. Amer. Naturalist 112:57–71. Ruttner, F. 1931. Hydrographische und hydrochemische Beobachtungen auf Java, Sumatra und Bali. Arch. Hydrobiol. Suppl. 8:197–454.Google Scholar
  12. Schindler, D.W. 1985. The coupling of elemental cycles by organisms: Evidence form whole-lake chemical perturbations. pp. 225–250. In: W. Stumm, Editor. Chemical Processes in Lakes. Wiley, New York.Google Scholar
  13. Vollenweider, R.A. 1985. Elemental and biochemical composition of plankton biomass; some comments and explorations. Arch. Hydrobiol. 105: 11–29.Google Scholar
  14. Wetzel, R.G. 1983. Limnology. 2nd Ed. Saunders Coll., Philadelphia. 860 pp.Google Scholar
  15. Wetzel, R.G. 1990. Land-water interfaces: Metabolic and limnological regulators. Baldi Memorial Lecture. Verh. Int. Verein. Limnol. 24: 6–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem StudiesThe New York Botanical Garden, Cary ArboretumMillbrookUSA

Personalised recommendations