Skip to main content

Composition and Biomass of Phytoplankton

  • Chapter
Limnological Analyses

Abstract

The structure of photosynthetic populations in aquatic ecosystems is dynamic and constantly changing in species composition and biomass distribution. An understanding of community structure is dependent on an ability to differentiate between true population changes and variations in spatial and temporal distribution. Changes in species composition and biomass may affect photosynthetic rates, assimilation efficiencies, rates of nutrient utilization, grazing rates, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association. 1989. Standard Methods for the Examination of Water and Wastewater. 17th Ed. American Public Health Association, Washington, DC. 1550 pp.

    Google Scholar 

  • Bellinger, E.G. 1974. A note on the use of algal sizes in estimates of population standing crops. Brit. Phycol. J. 9: 157–161.

    Google Scholar 

  • Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Progr. Ser. 36:171–176.

    Google Scholar 

  • Brock, T.D. 1983. Membrane Filtration: A User’s Guide and Reference Manual. Science Tech. Inc. Madison. 381 pp.

    Google Scholar 

  • Clark, W.J. and W.F. Sigler. 1963. Method of concentrating phytoplankton samples using membrane filters. Limnol. Oceanogr. 8:127–129.

    Google Scholar 

  • Coulon, C. and V. Alexander. 1972. A sliding-chamber phytoplankton settling technique for making permanent quantitative slides with applications in fluorescent microscopy and autoradiography. Limnol. Oceanogr. 17:149–152.

    Google Scholar 

  • Crumpton, W.G. and R.G. Wetzel. 1981. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol. Oceanogr. 26: 976–980.

    Google Scholar 

  • deNoyelles, F., Jr. 1968. A stained-organism filter technique for concentrating phytoplankton. Limnol. Oceanogr. 13: 562–565.

    Google Scholar 

  • Dodson, A.N. and W.H. Thomas. 1964. Concentration of plankton in a gentle fashion. Limnol. Oceanogr. 9: 455–456.

    Google Scholar 

  • Golterman, H.L. and R.S. Clymo (eds). 1969. Methods for Chemical Analysis of Fresh Waters. IBP Handbook No. 8. Blackwell, Oxford. 172 pp.

    Google Scholar 

  • Holmes, R.W. 1962. The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 433. 6 pp.

    Google Scholar 

  • Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Conseil Perm. Int. Explor. Mer 30:3–15.

    Google Scholar 

  • Jackson, H.W. and L.G. Williams. 1962. Calibration and use of certain plankton counting equipment. Trans. Amer. Microsc. Soc. 81:96–103.

    Google Scholar 

  • Jacobsen, T.R. 1982. Comparison of chlorophyll a measurements by fluorometric, spectrophotometric and high pressure liquid chromatographic methods in aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16: 35–45.

    Google Scholar 

  • Javornickÿ, P. 1958. Revise nékterÿch metod pro zjigiovâni kvantity fytoplanktonu. (The revision of some quantitative methods for phytoplankton research.) (In Czech, with English summary.) Sci. Pap. Inst. Chem. Technol. Prague, Fac. Technol. Fuel and Water 2 (Part 1): 283–367.

    Google Scholar 

  • Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c i and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191–194.

    Google Scholar 

  • Kellar, P.E., S.A. Paulson, and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Tech. Rep. 5, Lake Mead Limnological Res. Center, Univ. Nevada, Las Vegas. 234 pp.

    Google Scholar 

  • Lium, B.W. and W.T. Shoaf. 1978. The use of magnesium carbonate in chlorophyll determinations. Wat. Resources Bull. 14:190–194.

    Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Lund, J.W.G. 1951. A sedimentation technique for counting algae and other organisms. Hydrobiologia 3: 390–394.

    Article  Google Scholar 

  • Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.

    Google Scholar 

  • Marker, A.F.H. and S. Jinks. 1982. The spectrophotometric analysis of chlorophyll a and phaeopigments in acetone, ethanol and methanol. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16: 3–17.

    Google Scholar 

  • Marker, A.F.H., C.A. Crowther, and R.J.M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 52–69.

    Google Scholar 

  • McAlice, B.J. 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnol. Oceanogr. 16: 19–28.

    Google Scholar 

  • McNabb, C.D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol. Oceanogr. 5:57–61.

    Google Scholar 

  • Moore, J.K. 1963. Refinement of a method for filtering and preserving marine phytoplankton on a membrane filter. Limnol. Oceanogr. 8: 304–305.

    Google Scholar 

  • Mullin, M.M., P.R. Sloan, and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307–311.

    Google Scholar 

  • Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:14–36.

    Google Scholar 

  • Palmer, C.M. and T.E. Maloney. 1954. A new counting slide for nannoplankton. Spec. Publ. Amer. Soc. Limnol. Oceanogr. 21. 6 pp.

    Google Scholar 

  • Redalje, D.G. and E.A. Laws. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62: 73–79.

    Google Scholar 

  • Riemann, B. 1980. A note on the use of methanol as an extraction solvent for chlorophyll a determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 70–78.

    Google Scholar 

  • Reimann, B. 1982. Measurement of chlorophyll a and its degradation products: A comparison of methods. Arch. Hydrobiol. Beih. Ergebn. Limnol. /6: 19–24.

    Google Scholar 

  • Schanz, F. and H. Rai. 1988. Extract preparation and comparison of fluorometric, chromatographic (HPLC) and spectrophotometric determinations of chlorophyll-a. Arch. Hydrobiol. 112: 533–539.

    Google Scholar 

  • Schröder, R. 1969. Ein summierender Wasserschöpfer. Arch. Hydrobiol. 66: 241–243.

    Google Scholar 

  • Sicko-Goad, L., E.F. Stoermer, and B.G. Ladewski. 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93: 147–163.

    Article  Google Scholar 

  • Stainton, M.P., M.J. Capel, and F.A.J. Armstrong. 1977. The Chemical Analysis of Fresh Water. 2nd Ed. Misc. Spec. Publ. Fish. Environ. Canada 25. 180 pp.

    Google Scholar 

  • Sterman, N.T. 1988. Spectrophotometric and fluorometric chlorophyll analysis. pp. 35–45. In: C.S. Lobban, D.J. Chapman, and B.P. Kremer, Editors. Experimental Phycology: A Laboratory Manual. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Straskraba, M. and P. Javornickÿ. 1973. Limnology of two re-regulation reservoirs in Czechoslovakia. Hydrobiol. Studies 2: 249–316.

    Google Scholar 

  • Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.

    Google Scholar 

  • Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 2nd Ed. Fisheries Research Board of Canada, Ottawa. 310 pp.

    Google Scholar 

  • Tyler, P.A. 1971. A simple and rapid technique for surveying size and shape variation in desmids and diatoms. Brit. Phycol. J. 6: 231–233.

    Google Scholar 

  • Utermöhl, H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Int. Ver. Limnol. 5: 567–595.

    Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 9. 38 pp.

    Google Scholar 

  • Wetzel, R.G. 1983. Limnology, 2nd Ed. Saunders Coll., Philadelphia. 860 pp.

    Google Scholar 

  • Whipple, G.C. 1927. The Microscopy of Drinking Water. 4th Ed. Wiley and Sons, New York. 586 pp.

    Google Scholar 

  • Yentsch, C.S. and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (1991). Composition and Biomass of Phytoplankton. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4098-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4098-1_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4100-1

  • Online ISBN: 978-1-4757-4098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics