Advertisement

Use of GIS and Remote Sensing to Develop Indicators of Phosphorus Non-Point Source Pollution in the Pike River Basin

  • Julie Deslandes
  • Aubert Michaud
  • Ferdinand Bonn
Conference paper

Abstract

The Pike River is amongst the main watercourses discharging into Missisquoi Bay, a spur of Lake Champlain extending into Quebec. Its watershed drains some 630 km2, of which 99 km2 are located in Vermont. The objective of this study is to adapt agrienvironmental indicators to the landscape scale to provide an holistic perspective of phosphorus sources and transfer in the Pike River watershed. The development of agrienvironmental indicators of non-point P pollution was supported by remote sensing, spatial integration of data and the Soil and Water Assessment Tool (SWAT). These indicators were evaluated on subwatersheds of about 5 km2. The validation of the indicators at the subwatershed scale was supported by water quality records from the monitoring of 18 tributaries and sections of the Pike River. The agricultural land use, topographic attributes, the runoff SCS curve number, the mass balance of P and the P soil saturation were significantly correlated with P concentrations measured under peak streamflow conditions, in response to spring and fall long-duration precipitations, snowmelt and saturated or frozen soil conditions. It was found that 73% of the variation for bioavailable P sampled within the hydrological network is explained by the P mass balance and subwatershed agricultural land use.

Keywords

Total Phosphorus Digital Elevation Model Geographical Information System Nonpoint Source Reactive Soluble Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J.G., P.M. Allen, and G.T. Bernhardt (1993) A Comprehensive Surface-Groundwater Flow Model, Journal of Hydrology 142: 47–69.CrossRefGoogle Scholar
  2. Arnold, J.G., J.R. Williams, A.D. Nicks, and N.B. Sammons (1990) SWRRB A basin scale simulation model for soil and water resources management, Texas A M Press. College Station, TX, 255 p.Google Scholar
  3. Bernard, C. (1996) Estimation de l’érodabilité des principales séries de sol du Québec, à l’aide du nomographe de Wischmeier, Agrosol 9 (2): 6–12.Google Scholar
  4. Budd, L. and D.W. Meals (1994) Lake Champlain Nonpoint Source Pollution Assessment. Technical Report No. 6, Lake Champlain Basin Program, Grand Isle, Vermont.Google Scholar
  5. Cattaï, J. (2002) Amélioration des classifications de l’utilisation du territoire par des approches multi-temporelle, stratifiée et champ-par-champ d’images du satellite Landsat, mémoire de maîtrise non-publié, Département des lettres et sciences humaines, Université de Sherbrooke.Google Scholar
  6. Caumartin, J. and R. Vincent (1994) Diagnostic environnemental de la rivière aux Brochets, Ministère de l’Environnement et de la Faune du Québec, 93 p.Google Scholar
  7. Commission sur la gestion de l’eau (2002) Revoir de fond en comble la stratégie d’assainissement agricole, Gouvernement du Québec, Rapport No GQM00256, 30 p.Google Scholar
  8. Jamieson, A., C.A. Madramootoo and P. Enright (2003) Phosphorus losses in surface and subsurface runoff from a snowmelt event on an agricultural field in Quebec, Canadian Biosystems Engineering 45:1. 1–1. 7.Google Scholar
  9. Daniel, T.C., A. N. Sharpley, D. R. Edwards, R. Wedepohl, and J. L. Lemunyon (1994) Minimizing surface water eutrophication from agriculture by phosphorus management. Journal of Soil and Water Conservation Supplement 49: 30–38.Google Scholar
  10. Foster, G.R., D.K. McCool, K.G. Renard and W.0 Moldenhauer (1981) Conversion of the Universal Soil Loss Equation to SI Mertric Units, Journal of Soil and Water Conservation, 36: 355–359.Google Scholar
  11. Giroux, M, and T.S. Tran (1996) Critères agronomiques et environnementaux liés à la disponibilité, la solubilité et la saturation en phosphore des sols agricoles du Québec, Agrosol 2: 51–57.Google Scholar
  12. Hegman, W., D. Wang and C. Borer (1999) Estimation of Lake Champlain basin wide nonpoint source phosphorus export: Grand Isle, Vt., Lake Champlain Basin Program, Technical Report no. 31, 81 p.Google Scholar
  13. Lemunyon, J.L., and R.G. Gilbert (1993) The Concept and Need for a Phosphorus Assessment Tool, Journal Proc. Agric. 6 (4): 483–486.Google Scholar
  14. Littell, R. C., Milliken, G. A., Stroup, W. and R. D. Wolfinger (1996) SAS System for Mixed Procedure, Cary, NC: SAS Institute Inc., pp 1–29.Google Scholar
  15. Mehlich, A. (1984) Mehlich-3 soil extractant: A modification to Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15: 1049–1416.Google Scholar
  16. Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (1990) Inventaire des problèmes de dégradation des sols agricoles du Québec, Région agricole 6 Richelieu Saint-Hyacinthe, Gouvernement du Québec, Bibliothèque nationale du Québec, 119 p.Google Scholar
  17. Michaud, A.R. and P. Beaudet (1998) Analyse de la pression agroenvironnementale à l’échelle du territoire. Réseau Érosion de l’ORSTOM, Bulletin 18, Congrès conjoint AQSSS-ORSTOM: Le sol et l’eau: deux ressources à gérer en interrelations, p. 491–505.Google Scholar
  18. Michaud, A.R., R. Lauzier and M.R. Laverdière (2002) Temporal and spatial variability in nonpoint source phosphorus: The Ruisseau-aux-Castors case study, Pike river basin, Quebec. Lake Champlain Research Consortium, Symposium 2002: Lake Champlain in the new millennium. Saint-Jean-sur-Richelieu, Québec.Google Scholar
  19. Organisation de coopération et de développement économique (1997) Indicateurs environnementaux pour l’agriculture. Service des publications, OCDE, Paris, 72 p.Google Scholar
  20. Murphy, J., and J.R. Riley (1962) A modified single solution method for the determination of phosphates in surface waters. Anal. Acta 27: 31–36.Google Scholar
  21. Pote, D.H., T.C. Daniel, A.N. Sharpley, P.A. Moore, Jr., D.R. Edwards, and D.J. Nichols (1996) Relating extractable soil phosphorus to phosphorus losses in runoff, Soil Science Society of America Journal 60: 855–859.CrossRefGoogle Scholar
  22. Sharpley, A.N., W.W. Troeger and S.J. Smith (1991) The measurement of bioavailable phosphorus un agricultural runoff. J. Env. Qual. 20: 235–238.Google Scholar
  23. Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel, K.R. Reddy (1994) Managing AgriculturalGoogle Scholar
  24. Phosphorus for Protection of Surface Waters: Issues and Options, J. Env. Qual., 23, 437–451.Google Scholar
  25. Williams, J.R. (1975) Sediment routing for agricultural watersheds, Water Resources Bull. 11 (5): 965–974.CrossRefGoogle Scholar
  26. Wischmeier W.H., Jonhson C.B. and Cross B.V. (1971) A soil erodNlity nomograph for farmland and construction sites,. J. Soil and Water Conservation 26 (5): 189–192.Google Scholar
  27. U.S. Department of Agriculture, Natural Resources Conservation Service (2001) National Soil Survey Handbook title 430-V1. [Online] Available: http:llwww.statlab.iastate.edu/soilslnsshl. Google Scholar
  28. U.S. Department of Agriculture, Soil Conservation Service (1972) National Engineering Handbook, Hydrology Section 4, Chapters 4–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Julie Deslandes
    • 1
  • Aubert Michaud
  • Ferdinand Bonn
  1. 1.Research and Development Institute for the Agri-Environment (IRDA)Ste-FoyCanada

Personalised recommendations