Ligand Binding Sites Within the Integrins

  • Danny S. Tuckwell
  • Martin J. Humphries


Integrins are heterodimeric transmembrane proteins composed of an α and ß subunit and their interactions with a range of cell surface, soluble and extracellular matrix molecules are central to many physiological processes.1–3 Electron microscopy (EM) studies have provided a picture of the gross structure of integrins which are seen to have a globular head and two stalks which extend through the plasma membrane (Fig. 5.1.1A). Integrin heterodimers can be dissociated by EDTA, and this has shown that both subunits contribute to the globular head and that each possesses a stalk4–7 (Fig. 5.1.1A; see chapter 1). Examination of the amino acid sequence of the integrin a and 13 subunits reveals a limited degree of defined structure, and this is shown in Figure 5.1.1B (see chapter 1).


Ligand Binding Divalent Cation Ligand Binding Site Globular Head Leukocyte Adhesion Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Humphries MJ. The molecular basis and specificity of integrin-ligand interactions. J Cell Science 1990; 97: 585–592.PubMedGoogle Scholar
  2. 2.
    Hynes RO. Integrins: Versatility, modulation, and signalling in cell adhesion: Cell 1992; 69: 11–25.Google Scholar
  3. 3.
    Gumbiner B. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–357.CrossRefPubMedGoogle Scholar
  4. 4.
    Carrell NA, Fitzgerrald LA, Steiner B et al. Structure of human membrane glycoproteins IIb and IIIa as determined by electron microscopy. J Biol Chem 1985; 260: 1743–1749.PubMedGoogle Scholar
  5. 5.
    Kelley T, Molony L, Burridge K. Purification of two smooth muscle glycoproteins related to integrin. J Biol Chem 1987; 262: 17189–17199.Google Scholar
  6. 6.
    Nermut MV, Green NM, Eason P et al. Electron microscopy and structural model of human fibronectin receptor. EMBO J 1988; 7: 4093–4099.Google Scholar
  7. 7.
    Weisel JW, Nagaswami C, Vilaire G et al. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 1992; 267: 16637–16643.PubMedGoogle Scholar
  8. 8.
    Newham P, Humphries MJ. Integrin adhesion receptors: structure, function and implications for biomedicine. Molecular Medicine Today 1996; 2: 304–313.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirchhofer D, Grzesiak J, Pierschbacher MD. Calcium as a potential physiological regulator of integrin-mediated cell adhesion. J Biol Chem 1991; 266: 4471–4477.PubMedGoogle Scholar
  10. 10.
    Dransfield I, Cabanas C, Craig A et al. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol 1992; 116: 219–226.CrossRefPubMedGoogle Scholar
  11. 11.
    Grzesiak JJ, Davis GE, Kirchhofer D et al. Regulation of a2131-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mgt* and Cat*. J Cell Biol 1992; 117: 1109–1117.CrossRefPubMedGoogle Scholar
  12. 12.
    Kern A, Eble J, Golbik R et al. Interaction of type IV collagen with the isolated integrins a1131 and a2131. Eur J Biochem 1993; 215: 151–159.CrossRefPubMedGoogle Scholar
  13. 13.
    Pfaff M, Aumailley M, Specks U et al. Integrin and arg-gly-asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 1993; 206: 167–176.CrossRefPubMedGoogle Scholar
  14. 14.
    Mould AP, Akiyama S, Humphries MJ. Regulation of integrin a5131-fibronectin interactions by divalent cations. J Biol Chem 1995; 270: 26270–26277.CrossRefPubMedGoogle Scholar
  15. 15.
    Larson RS, Corbi AL, Berman L et al. Primary structure of the leukocyte function-associated molecule-1 a subunit: an integrin with an embedded domain defining a protein superfamily. J Biol Chem 1989; 108: 703–712.Google Scholar
  16. 16.
    Tuckwell DS, Humphries MJ, Brass A. A secondary structure model of the integrin a subunit N-terminal domain based on analysis of multiple alignments. Cell Adhesion Commun 1994; 2: 385–402.CrossRefGoogle Scholar
  17. 17.
    Corbi AL, Miller LJ, O’Connor K et al. cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein. p150,95. EMBO J 1987; 6: 4023–4028.Google Scholar
  18. 18.
    Rivas GA, Gonzalez-Rodriguez J. Calcium binding to human platelet integrin GPIIb/ IIIa and to its constituent glycoproteins. Effects of lipids and temperature. Biochem J 1991; 276: 35–40.PubMedGoogle Scholar
  19. 19.
    Tuckwell DS, Brass A, Humphries MJ. Homology modelling of integrin EF-hands. Biochem J 1992; 285: 325–331.PubMedGoogle Scholar
  20. Smith JW, Cheresh DA. Integrin (aVß3)ligand interaction. J Biol Chem 1990; 265:2168–2172.Google Scholar
  21. 21.
    D’Souza S, Ginsberg MH, Burke TA et al. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit. J Biol Chem 1990; 265: 3440–3446.PubMedGoogle Scholar
  22. 22.
    Kawasaki H, Kretsinger R. Calcium-binding proteins 1: EF-hands. Protein profiles 1994; 1(4).Google Scholar
  23. 23.
    Edwards JG, Hameed H, Campbell G. Induction of fibroblast spreading by Mn’*: A possible role for unusual binding sites for divalent cations in receptors for proteins containing arg-gly-asp. J Cell Sci 1988; 89: 507–513.PubMedGoogle Scholar
  24. 24.
    D’Souza S, Ginsberg MH, Matsueda GR et al. A discrete sequence in a platelet integrin is involved in ligand recognition, Nature 1991; 350: 66–68.CrossRefPubMedGoogle Scholar
  25. 25.
    Taylor DB, Gartner TK. A peptide corresponding to GPIIba 300–312, a presumptive fibrinogen gamma-chain binding site on the platelet integrin GPIIb/IIIa, inhibits the adhesion of platelets to at least four adhesive ligands. J Biol Chem 1992; 267: 11729–11733.PubMedGoogle Scholar
  26. 26.
    Gulino D, Boudignon C, Zhang L et al. Cat*-binding properties of the platelet glycoprotein IIb ligand-interacting domain. J Biol Chem 1992; 267: 1001–1007.PubMedGoogle Scholar
  27. 27.
    Masumoto A, Hemler ME. Mutation of putative divalent cation sites in the a4 subunit of integrin VLA-4: Distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin. J Cell Biol 1993; 123: 245–254.CrossRefPubMedGoogle Scholar
  28. 28.
    Loftus JC, Halloran CE, Ginsberg MH et al. The amino terminal one-third of aIlb defines the ligand recognition specificity of integrin allb(33. J Biol Chem 1996; 271: 2033–2039.CrossRefPubMedGoogle Scholar
  29. 29.
    Diamond MS, Garcia-Aguilar A, Bickford JK et al. The I-domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 1993; 120: 1031–1043.CrossRefPubMedGoogle Scholar
  30. 30.
    Kamata T, Puzon W, Takada Y. Identification of putative ligand-binding sites of the integrin a4ß1 (VLA-4, CD49d/CD29). Biochem J 1995; 305: 945–951.PubMedGoogle Scholar
  31. 31.
    Bilsland CAG, Diamond MS, Springer TA. The leukocyte integrin p150,95 (CD11c/ CD18) as a receptor for iC3b. J Immunology 1994; 152: 4582–4589.Google Scholar
  32. 32.
    Ma L, Conrad PJ, Webb DL et al. Aspartate 698 within a novel cation binding motif in a4 integrin is required for cell adhesion. J Biol Chem 1995; 270: 18401–18407.CrossRefPubMedGoogle Scholar
  33. 33.
    Irie A, Kamata T, Puzon-McLaughlin W et al. Critical amino acid residues for binding are clustered in a predicted f3 turn of the third N-terminal repeat of the integrin a4 and a5 subunits. EMBO J 1995; 14: 5550–5556.Google Scholar
  34. 34.
    Scallon BJ, Fung W-JC, Tsang TC et al. Primary structure and functional activity of a phosphatidylinositol-glycan-specific phospholipase D. Science 1991; 252: 446–448.CrossRefPubMedGoogle Scholar
  35. 35.
    Li JY, Hollfelder K, Huang KS et al. Structural features of GPI-specific phospholipase D revealed by proteolytic fragmentation and Ca2+ binding studies. J Biol Chem 1994; 269: 28963–28971.PubMedGoogle Scholar
  36. 36.
    Colombatti A, Bonaldo P. Doliana R. Type A modules: interacting domains found in several non-fibrillar collagens and in other extra-cellular proteins. Matrix 1993; 13: 297–306.CrossRefPubMedGoogle Scholar
  37. 37.
    Shaw SK, Cepek KL, Murphy EA et al. Molecular cloning of the human mucosal lymphocyte integrin aE subunit. J Biol Chem 1994; 269: 6016–6025.PubMedGoogle Scholar
  38. 38.
    Danilenko DM, Rossitto PV, van der Vieren M et al. A novel canine leukointegrin, aD(32, is expressed by specific macrophage sub-populations in tissue and a minor CD8+ lymphocyte subpopulation in peripheral blood. J Immumol 1995; 155: 35–44.Google Scholar
  39. 39.
    Roth GJ, Titani K, Noyer LW et al. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry 1986; 25: 8357–8361.CrossRefPubMedGoogle Scholar
  40. 40.
    Piétu G, Meulien P, Cherel G et al. Production in Escherischia colt of a biologically active subfragment of von Willebrand factor corresponding to the platelet glycoprotein Ib, collagen and heparin binding domains. Biochem Biophys Res Commun 1989; 164: 1339–1347.CrossRefPubMedGoogle Scholar
  41. 41.
    Cruz MA, Handin RI, Wise RJ. The interaction of von Willebrand factor-Al domain with platelet glycoprotein Ib/IX. J Biol Chem 1993; 268: 21238–21245.PubMedGoogle Scholar
  42. 42.
    Sadler JE. von Willebrand factor. J Biol Chem 1991; 266: 22777–22780.PubMedGoogle Scholar
  43. 43.
    Kern A, Briesewitz R, Bank I et al. The role of the 1 domain in ligand binding of the human integrin a1131. J Biol Chem 1994; 269: 22811–22816.PubMedGoogle Scholar
  44. 44.
    Kamata T, Puzon W, Takada Y. Identification of putative ligand binding sites within I domain of integrin a2ß1 (VLA-2, CD49a/ CD29). J Biol Chem 1994; 269: 9659–9663.PubMedGoogle Scholar
  45. 45.
    Landis RC, Bennett RI, Hogg N. A novel LEA-1 activation epitope maps to the I domain. J Cell Biol 1993; 120: 1519–1527.CrossRefPubMedGoogle Scholar
  46. 46.
    Landis RC, McDowell A, Holness CLL et al. Involvement of the “I” domain of LFA-1 in selective binding to ligands ICAM-1 and ICAM-3. J Cell Biol 1994; 126: 29–537.CrossRefGoogle Scholar
  47. 47.
    Calderwood DA, Tuckwell DS, Humphries MJ. Specificity of integrin I-domain-ligand binding. Biochem Soc Trans 1995; 23: 504S.Google Scholar
  48. 48.
    Kamata T, Takada Y. Direct binding of collagen to the I-domain of integrin a2R1 (VLA-2, CD49b/CD29) in a divalent cation-independent manner. J Biol Chem 1994; 269: 26006–26010.PubMedGoogle Scholar
  49. 49.
    Tuckwell DS, Calderwood DA, Green LJ et al. Intergin a2 I-domain is a binding site for collagens. J Cell Science 1995; 108: 1629–1637.PubMedGoogle Scholar
  50. 50.
    King SL, Cunningham JA, Finberg RW et al. Echovirus 1 interaction with the isolated VLA-1 I domain J Virol 1995; 69: 3237–3239.Google Scholar
  51. 51.
    Randi AM, Hogg N. I domain of ß2 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1. J Biol Chem 1994; 269: 12395–12398.PubMedGoogle Scholar
  52. 52.
    Ueda T, Rieu P, Brayer J et al. Identification of the complement iC3b binding site in the (32 integrin CR3 (CD11b/CD18). Proc Natl Acad Sei USA 1994; 91: 10680–10684CrossRefGoogle Scholar
  53. 53.
    Xie J, Li R, Kotovuori Pet al. Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CDI lb/CD18 through the A domain. J Immunol 1995; 155: 3619–3628.PubMedGoogle Scholar
  54. 54.
    Zhou L, Lee DHS, Plescia J et al. Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J Biol Chem 1994; 269: 17075–17079.PubMedGoogle Scholar
  55. 55.
    Muchowski PJ, Zhang L, Chang ER et al. Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J Biol Chem 1994; 269: 26419–26423.PubMedGoogle Scholar
  56. 56.
    Rieu P, Ueda T, Haruta I et al. The A-domain of ß2 integrin CR3 (CD1lb/ CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J Cell Biol 1994; 127: 2081–2091.CrossRefPubMedGoogle Scholar
  57. 57.
    Lee J-O, Rieu P, Arnaout MA et al. Crystal structure of the A-domain from the a subunit of integrin CR3 (CD1I b/CD18). Cell 1995; 80: 631–638.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee J-O, Bankston LA, Arnaout MA et al. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 1995; 3: 1333–1340.CrossRefPubMedGoogle Scholar
  59. 59.
    Qu A, Leahy DJ. Crystal structure of the I-domain from the CDl1a/CD18 (LFA-1, aL(32) integrin. Proc Natl Acad Sci USA 1995; 92: 10277–10281.CrossRefPubMedGoogle Scholar
  60. 60.
    Perkins SJ, Smith KF, Williams SC et al. The secondary structure of the von Wille-brand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. J Mol Biol 1994; 238: 104–119.CrossRefPubMedGoogle Scholar
  61. 61.
    Michishita M, Videm V, Arnaout A. A novel divalent cation-binding site in the A domain of the (32 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 1993; 72: 857–867.CrossRefPubMedGoogle Scholar
  62. 62.
    Kamata T, Wright R, Takada Y. Critical threonine and aspartate residues within the I-domains of j32 integrins for interactions with intercellular adhesion molecule 1(ICAM-1) and C3bi. J Biol Chem 1995; 270: 12531–12535.CrossRefPubMedGoogle Scholar
  63. 63.
    Edwards CP, Champe M, Gonzales T et al. Identification of amino acids in the CD1 la I-domain important for binding of the leukocyte function-associated antigen-1 (LFA1) to intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 1995; 270: 12635–12640.CrossRefPubMedGoogle Scholar
  64. 64.
    McGuire SL, Bajt ML. Distinct ligand binding sites in the I domain of integrin aM132 that differentially affect a divalent cation-dependent conformation. J Biol Chem 1995; 270: 25866–25871.CrossRefPubMedGoogle Scholar
  65. 65.
    Van Kooyk Y, Binnerts ME, Edwards CP et al. Critical amino acids in the lymphocyte function-associated antigen-1 I domain mediate intercellular adhesion molecule 3 binding and immune function. J Exp Med 1996; 183: 1247–1252.CrossRefPubMedGoogle Scholar
  66. 66.
    Horiuchi T, Macon KJ, Engler JA et al. Site-directed mutagenesis of the region around cys-241 of complement component C2. J Immunol 1991; 147: 584–589.PubMedGoogle Scholar
  67. 67.
    Chan BMC, Hemler ME. Multiple functional forms of the integrin VLA-2 can be derived from a single a2 cDNA clone: interconversion of forms induced by a ßl antibody. J Cell Biol 1993; 120: 537–543.CrossRefPubMedGoogle Scholar
  68. 68.
    Pryzdial ELG, Isenman DE. A reexamination of the role of magnesium in the human alternative pathway of complement. Mol Immunology 1986; 23: 87–96.CrossRefGoogle Scholar
  69. 69.
    Huang C, Springer TA. A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J Biol Chem 1995; 270: 19008–19016.CrossRefPubMedGoogle Scholar
  70. 70.
    Champe M, McIntyre BW, Berman PW. Monoclonal antibodies that block the activity of leucocyte function-associated antigen 1 recognise three distinct epitopes in the inserted domain of CD11a. J Biol Chem 1995; 270: 1388–1394.CrossRefPubMedGoogle Scholar
  71. 71.
    Matsushita T, Sadler JE. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycopro- tein Ib. J Biol Chem 1995; 270: 13406–13414.CrossRefPubMedGoogle Scholar
  72. 72.
    Altieri DC, Plescia J, Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen y chain interacts with CD11 b/ CD18 integrin (aM[32, Mac-1) and promotes leukocyte adhesion. J Biol Chem 1993; 268: 1847–1853.PubMedGoogle Scholar
  73. 73.
    Staunton DE, Dustin ML, Erickson HP et al. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 1990; 61: 243–254.CrossRefPubMedGoogle Scholar
  74. 74.
    Holness CL, Bates PA, Littler AJ et al. Analysis of the binding site on intercellular adhesion molecule 3 for the leukocyte integrin lymphocyte function-associated antigen 1. J Biol Chem 1995; 270: 877–884.CrossRefPubMedGoogle Scholar
  75. 75.
    Li R, Nortamo P, Valmu Pet al. A peptide from ICAM-2 binds to leukocyte integrin CD1 la/ CD18. J Biol Chem 1993; 268: 17513–17518.PubMedGoogle Scholar
  76. 76.
    Li R, Xie J, Kantor C et al. A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c/ CD18. J Cell Biol 1995; 129: 1143–1153.CrossRefPubMedGoogle Scholar
  77. 77.
    Osborn L, Vassallo C, Browning BG et al. Arrangement of domains, and amino acids required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (a4ß1). J Cell Biol 1994; 124: 601–608.CrossRefPubMedGoogle Scholar
  78. 78.
    Clements JM, Newham P, Shepherd M et al. Identification of a key integrin-binding sequence in VCAM-1 homologous to the LDV active site in fibronectin. J Cell Science 1995; 107: 2127–2135.Google Scholar
  79. 79.
    Elices MJ, Osborn L, Takada Y et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60: 577–584.CrossRefPubMedGoogle Scholar
  80. 80.
    Komoriya A, Green LJ, Mervic M et al. The minimal essential sequence for a major cell type-specific adhesion site (CSI) within the alternatively spliced type III connecting segment domain of fibronectin is leucineaspartic acid-valine. J Biol Chem 1991; 266: 15075–15079.PubMedGoogle Scholar
  81. 81.
    Vandenberg P, Kern A, Ries A et al. Characterization of a type IV collagen major cell binding site with affinity to the al ß1 and the a2131 integrins. J Cell Biol 1991; 113: 1475–1483.CrossRefPubMedGoogle Scholar
  82. 82.
    Eble JA, Golbik R, Mann K et al. The al [31 integrin recognition site of the basement membrane collagen molecule [al (IV)] 2a2(IV). EMBO J 1993; 12: 4795–4802.Google Scholar
  83. 83.
    Williams SC, Sim RB. The human complement factor B-C3b complex. Investigation of the interaction using C3b bound to thiolSepharose. Molecular Immunology 1996; in press.Google Scholar
  84. 84.
    Taniguchi-Sidle A, Isenman DE. Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 a’-chain. J Immunol 1994; 153: 5285–5301.PubMedGoogle Scholar
  85. 85.
    Smith JW, Cheresh DA. The arg-gly-asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61–203 of the [3 subunit. J Biol Chem 1988; 263: 18726–18731.PubMedGoogle Scholar
  86. 86.
    D’Souza SE, Ginsberg MH, Burke TA et al. Localization of an arg-gly-asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91–93.CrossRefPubMedGoogle Scholar
  87. 87.
    Corbi AL, Vara A, Ursa A et al. Molecular basis for a severe case of leukocyte adhesion deficiency. Eur J Immunol 1992; 22: 1877–1881.CrossRefPubMedGoogle Scholar
  88. 88.
    Loftus JC, O’Toole TE, Plow EF et al. A 33 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 219: 915–918.CrossRefGoogle Scholar
  89. 89.
    Takada Y, Ylanne J, Mandelmen D et al. A point mutation of integrin ß1 subunit blocks binding of 0ß1 to fibronectin and invasin but not recruitment to adhesion plaques. J Cell Biol 1992; 119: 913–921.CrossRefPubMedGoogle Scholar
  90. 90.
    Bajt ML, Loftus JC. Mutation of a ligand binding domain of 133 integrin. J Biol Chem 1994; 269: 20913–20919.PubMedGoogle Scholar
  91. 91.
    Andrieux A, Rabiet M-J, Chapel A et al. A highly conserved sequence of the arg-glyasp-binding domain of the integrin 33 subunit is sensitive to stimulation. J Biol Chem 1991; 266: 14201–1. 1207.Google Scholar
  92. 92.
    Pasqualini R, Koivunen E, Ruoslahti E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 1995; 130: 1189–1196.CrossRefPubMedGoogle Scholar
  93. 93.
    Bajt ML, Ginsberg MH, Frelinger AL et al. A spontaneous mutation of integrin alIb!33 (platelet glycoprotein IIb-IIla) helps define a ligand binding site. J Biol Chem 1992; 267: 3789–3794.PubMedGoogle Scholar
  94. 94.
    Steiner B, Trzeciak A, Pfenninger G et al. Peptides derived from a sequence within 133 integrin bind to platelet allb133 (GPIIb-IIIa) and inhibit ligand binding. J Biol Chem 1993; 268: 6870–6873.PubMedGoogle Scholar
  95. 95.
    Takada Y, Puzon W. Identification of a regulatory region of integrin 131 subunit using activating and inhibiting antibodies. J Biol Chem 1993; 268: 17597–17601.PubMedGoogle Scholar
  96. 96.
    Shih D-T, Edelman JM, Horwitz AF et al. Structure/function analysis of the integrin 131 subunit by epitope mapping. J Cell Biol 1993; 122: 1361–1371.CrossRefPubMedGoogle Scholar
  97. 97.
    Ramsamooj P, Lively MO, Hantgan RR. Evidence that the central region of glycoprotein IIIa participates in integrin receptor function. Biochem J 1991; 276: 725–732.PubMedGoogle Scholar
  98. 98.
    Honda S, Tomiyama Y, Pelletier AJ et al. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (AP5) at the amino terminus, of the human integrin 133 subunit. J Biol Chem 1995; 270: 11947–11954.CrossRefPubMedGoogle Scholar
  99. 99.
    Bazzoni G, Shih DT, Buck CA et al. Monoclonal antibody 9EG7 defines a novel 131 integrin eptiope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem 1995; 270: 25570–25577.CrossRefPubMedGoogle Scholar
  100. 100.
    D’Souza SE, Haas TA, Piotrowicz RS et al. Ligand and cation binding are dual functions of a discrete segment of the integrin 133 subunit: cation displacement is involved in ligand binding. Cell 1994; 79: 659–667.CrossRefPubMedGoogle Scholar
  101. 101.
    Stanley P, Bates PA, Harvey J et al. Integrin LFA-1 a subunit contains ICAM-1 binding site in domains V and VI. EMBO J 1994; 13: 1790–1798.Google Scholar
  102. Bajt ML, Goodman T, McGuire SL. 132 (CD18) mutations abolish ligand recognition by I domain integrins LFA-1 (aL(32, CD11a/CD18) and MAC-1 (aM132, CD11 b/ CD18). J Biol Chem 1995; 270:94–98.Google Scholar
  103. 103.
    Kraulis PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24: 946–950.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Danny S. Tuckwell
  • Martin J. Humphries

There are no affiliations available

Personalised recommendations