Stability of Tidal Inlet Navigation Channels and Adjacent Dredge Spoil Islands

  • Georges Drapeau
Conference paper
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 29)


The ultimate location for the disposal of sand dredged from the vicinity of tidal inlets is a compromise between environmental and economic concerns. Grande-Entrée Inlet on Iles-de-la-Madeleine in the Gulf of St. Lawrence is used to evaluate a tidal inlet-artificial island system. The cross-sectional area of this inlet is 2960 m2and the tidal prism is 64.1 x 106m3. Escoffier’s concept of critical cross-sectional area shows that Grande-Entrée Inlet is stable under natural as well as dredged conditions. The stability of the dredge spoil artificial island is assessed by comparing beach profiles and shoreline changes. The stability of the inlet-island system results from the fact that the tidal inlet is stable and the dredge spoil artificial island was placed on a pre-existing shoal. The dredging of the navigation channel confines the tidal flow so that the tidal inlet and the artificial island can be close to each other without interfering.


Shoreline Change Tidal Inlet Tidal Prism Navigation Channel Beach Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASA Consulting Ltd., 1986. A sediment transport model for continental shelf conditions. Internal report, Halifax, Canada.Google Scholar
  2. Bowen, A.V., 1980. Simple models of nearshore sedimentation; beach profiles and longshore bars. In: McCann, S.B. (ed.), The Coastline of Canada. Geological Sur. Canada, Pap. 80–10:1–11.Google Scholar
  3. Bruun, P., 1978. Stability of tidal inlets, theory and engineering. Elsevier, Amsterdam, 506 pp.Google Scholar
  4. Dimentberg, M., 1985. Long navigation channel traverses ecologically sensitive lagoon. Dredging and Port Construction, 12(4):53–57.Google Scholar
  5. Dolan, R., Hayden, B., May, P. and May, S., 1980. The reliability of shoreline change measurements from aerial photographs. Shore and Beach, 48(4):22–29.Google Scholar
  6. Drapeau, G., O’Neil, R.A, Long, B. and Karakiewicz, B., 1984. Use of the airborne lidar bathymetry system in coastal sedimentology. Proc. 8thSymp. Canadien de Télédétection, p. 231–238.Google Scholar
  7. Drapeau, G., 1985. Erosion et sédimentation du chenal de navigation des Mines Seleine, Iles-de-la-Madeleine, golfe du Saint-Laurent. Proc. Can. Coastal Conf. N.R.C., p. 569–583.Google Scholar
  8. Drapeau, G. and Mercier, O., 1987. Shoreline erosion and accretion budget of Magdalen Islands, Gulf of St. Lawrence. Proc. Coastal Sediments ’87, A.S.C.E., p. 1321 – 1332.Google Scholar
  9. Engelund, F. and Hansen, E., 1967. A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen.Google Scholar
  10. Escoffier, F.F., 1940. The stability of tidal inlets. Shore and Beach, 8(4): 114–115.Google Scholar
  11. Farquharson, W.I., 1970. Tides, tidal streams and currents in the Gulf of St. Lawrence. Bedford Inst. Oceanography, AOL, Rept. 1970–5, 145 pp.Google Scholar
  12. Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In: Leatherman, S.P.L. (ed.), Barrier islands from the Gulf of St. Lawrence to the Gulf of Mexico. Academic Press, New York, 325 pp.Google Scholar
  13. Jarrett, J.T., 1976. Tidal prism-inlet area relationships. GITI Rept. no 3, U.S. Army Corps of Engineers, CERC, Fort Belvoir, Virginia.Google Scholar
  14. Keulegan, G.H., 1951. Tidal flows in entrances. Water level fluctuations of basins in communication with seas, Third Progress Report, National Bureau of Standards Reports, No. 1146.Google Scholar
  15. Komar, P.D., 1976. Beach processes and sedimentation. Prentice-Hall, Englewood Cliffs, 429 pp.Google Scholar
  16. Mehta, A.J. and Özsoy, E., 1978. Inlet hydraulics; Flow dynamics and nearshore transport. In: Bruun, P. (ed.), Stability of tidal inlets, theory and engineering. Elsevier, Amsterdam, p. 83–161.CrossRefGoogle Scholar
  17. O’Brien, M.P., 1931. Estuary tidal prism related to entrance areas. Civil Engineering, 1 (8):738–739.Google Scholar
  18. O’Brien, M.P., 1969. Equilibrium flow areas of inlets on sandy coasts. Journal, Waterways and Harbors Division, ASCE, 95 (WW 1), p. 43–52.Google Scholar
  19. O’Brien, M.P. and Dean, R.G., 1972. Hydraulics and sedimentary stability of coastal inlets. Proc. 13thCoastal Eng. Conf. A.S.C.E., p. 761–780.Google Scholar
  20. O’Brien, M.P. and Clark, R.R., 1974. Hydraulic constants of tidal entrances. Proc. 14thCoastal Eng. Conf. A.S.C.E., p. 1546–1565.Google Scholar
  21. Pêches et Oécans Canada, 1986. Tables des marées et courants du Canada. Vol. 2. Pêches et Océans Canada, 41 pp.Google Scholar
  22. Sleath, J.F.A., 1984. Sea bed mechanics. Wiley, New York, 335 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Georges Drapeau
    • 1
  1. 1.INRS-OcéanologieUniversité du QuébecRimouskiCanada

Personalised recommendations