Fracture of Structures Caused by Explosive Loading: Scale Effects

  • A. G. Ivanov
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


The large number of existing materials and materials under development, and the variety of conditions under which they are applied, has resulted in many fracture concepts, semi-empirical theories of fracture, and fracture criteria. Each of these is reasonable for the range of parameters over which it has been investigated experimentally. These individual theories, in conjunction with previous experience in calculating the strength of structures have, for some time, proven satisfactory. However, problems have arisen because of further progress of technology in the field of unique large-sized structures intended for use under conditions of intense dynamic loads. The problem is exacerbated, in some cases, by the impossibility of performing full-scale tests to determine the actual strength reserve (safety factor) of a particular structure. Examples of unpredicted failure of some structures designed according to existing strength norms highlight the problem. Solution of these problems requires not only development of new fracture criteria, but also search for a uniform, physically justified, approach to the problem as a whole without taking into account minor details of the fracture phenomenon. As the basis of such an approach, the following fundamental achievement of the linear fracture mechanics (LFM) can be used: Fracture is a result of work done on the structure. The work required to cause a fracture is provided by the elastic energy (EE) of deformation stored in the structure. Recognition of this fact, based on Griffith’s idea regarding the condition for transition of a crack to an unstable state [1], has resulted in critical revision of fracture criteria and development of new methods for strength testing. Traditional measures of strength, namely the yield strength, σy, critical values of stress, σu (the beginning of the neck formation), strain, εu, or combinations of these quantities, appear to be insufficient. The role of characteristics of a material, such as the temporary resistance, σu, was limited by the narrow objective of comparison of materials in standard tests. The theoretical strength, from the point of view of energy criteria, appears to be 2–4 orders of magnitude less (!) than the strength of real materials [2].


Shock Wave Brittle Fracture Elastic Energy Scale Effect Fracture Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.A. Griffiths, Phil. Trans. Roy. Soc. A 221, pp. 163–198 (1920).Google Scholar
  2. [2]
    A.G. Ivanov and V.N. Mineev, Comb. ExpL Shock Waves 15(5) pp. 617–638 (1979). [trans. fromFiz. Gorenia Vzryvy 15(5) pp. 70–95 (1979).]Google Scholar
  3. [3]
    G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw Hill, New York, (1979).zbMATHGoogle Scholar
  4. [4]
    A.G. Ivanov, Sov. Phys. —Doklady (Physics) DokL Akad. Nauk SSSR 285 (2), pp. 357–360 (1985).Google Scholar
  5. [5]
    A.G. Ivanov, DokL Akad. Nauk SSSR. 321 (1), pp. 28–32 (1991).Google Scholar
  6. [6]
    A.G.Ivanov, V.A. Raevskii, and O.S. Vorontsova, DymatJ. 2 (1), pp. 63–68 (1995).Google Scholar
  7. [7]
    A.G. Ivanov, in: Proc. of X Intern. Conf. Ljublana, Yugoslavia, pp. 601–611 (1989). (See also DokL Akad. Nauk SSSR. 310(4) pp. 866–870 (1990))Google Scholar
  8. [8]
    A.G. Ivanov, V.A Sinitsyn, and S.A. Novikov, Dokl. Akad. NaukSSSR 194 (2), pp. 316–319 (1970).Google Scholar
  9. [9]
    A.G. Fedorenko, V.I. Tsypkin, et al.,Mech. Comp. Mat. (1), pp. 90–94 (1983).Google Scholar
  10. [10]
    Adachi Khiro, in: Fracture (ed. H. Liebowitz) Vol. 5, Academic Press, New York (1968), p. 259.Google Scholar
  11. [11]
    G.M. Bartenev and L.K. Izmailova, DokL Akad. NaukSSSR 146, pp. 1136–1140 (1982).Google Scholar
  12. [12]
    V.M. Fridman, and N.I. Shcherban’, Strength ofMaterials 12(11), pp. 1451–1453 (1980). [trans. from Probl. Prochn. 12 (11), pp. 111–113 (1980).Google Scholar
  13. [13]
    A.G. Ivanov, A.A. Uchaev, et al., Dokl. Akad. NaukSSSR 261 (4), pp. 868–871 (1981).Google Scholar
  14. [14]
    V.Z. Parton and E.M. Morozov, Mechanics ofElasto Plastic Destruction, Nauka, Moscow (1985). (in Russian)Google Scholar
  15. [15]
    V.R. Regel, A.I. Slutsker, E.E. Tomashevskii, Kinetic nature of strength, Nauka, Moscow, (1974). (in Russian)Google Scholar
  16. [16]
    D.A. Shockey, L. Seaman, and D.R. Curran: Metallurgical Effects at High Strain Rates (eds. M.A. Meyers, L.E. Murr) Plenum Press, New York (1979), pp. 473–493.Google Scholar
  17. [17]
    V. Weiss and S. Yukawa, in: Fracture toughness testing and its applications A symposium presented at the Sixty-seventh Annual Meeting AMTM, Chicago, 1964. ASTM Special Technical Pub. No. 361.Google Scholar
  18. [18]
    G.P. Cherepanov, DokL Akad. NaukSSSR 272 (3), pp. 590–593 (1983).Google Scholar
  19. [19]
    V.Z. Parton, Mechanics ofDestruction. From Theory to Practice, Nauka, Moscow (1990).Google Scholar
  20. [20]
    Adachi Khiro, “Methods for designing ordnance,” in: Razrushenie, Mashinostroenie, Moscow (1977). pp. 259–342.Google Scholar
  21. [21]
    V.A. Ryzhanski, V.N. Mineev, et al.,Mech. of Polymers (2), pp. 283–289 (1978).Google Scholar
  22. [22]
    K.E. Jackson, AMA J. (8), pp. 2099–2105 (1992).Google Scholar
  23. [23]
    Yu.N. Tyunyaev, V.N. Mineev, and N.N. Popov, Strength ofMaterials 10(1) pp. 20–22 (1978). [trans. from Problemy Prochn. 10(1) pp. 23–26 (1978).]Google Scholar
  24. [24]
    A.G.Ivanov, V.N. Mineev, et al., Comb. Expl. Shock Waves 10(4) pp. 526–529 (1974). [trans. from Fiz. Gorenia Vztyvy 10(4) pp. 603–607 (1974).]Google Scholar
  25. [25]
    V.I. Tsypkin and A.G. Ivanov, Strength ofMaterials 13(6) pp. 794–797 (1981). [trans. from Problemy Prochn. 13(6) pp. 110–112 (1981).]Google Scholar
  26. [26]
    A.G. Ivanov and V.A. Ryzhanski, J. AppL Mech. Tech. Phys. 35(1) pp. 139–142 (1994). [Trans. from Zh. PrikL Mekh. Tekh. Fiz. (1) pp.135–140 (1994).]Google Scholar
  27. [27]
    W.E. Baker, J. Appl. Mech. 27 (1), pp. 139–144, (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    A.G.Ivanov, S.A. Novikov, and V.A. Sinitsyn, J. Appl. Mech Tech. Phys. 9(6) pp. 706–711 (1968). [trans. from PrikL Mekh. Teich. Fiz. 9(6) pp. 94–98 (1968).]Google Scholar
  29. [29]
    F.A. Baum, L.P. Orlenko, K.P. Stanyukovich, V.P Chelyushev, and B.I. Shekhter, Physics of Explosion, Nauka, Moscow (1975).Google Scholar
  30. [30]
    B.L. Averbach, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968), p. 471.Google Scholar
  31. [31]
    A.G. Ivanov, V.A. Sinitsyn, and S.A. Novikov, Comb. ExpL Shock Waves 8(1) pp. 101–104 (1972). [trans. from Fiz. Gorenia Vzryvy 8(1) pp. 124–129 (1972).]Google Scholar
  32. [32]
    A.G. Ivanov, J. Appl. Mech Tech. Phys. 35(3) pp. 430–442 (1994). [trans. from PrikL Mekh. Teich. Fiz. 35(3) pp. 116–131(1994).]Google Scholar
  33. [33]
    A.G. Ivanov, V.A. Ryzhanski, V.I. Tsypkin, and A.T. Shitov, Comb. ExpL Shock Waves 17(3) pp. 327–331 (1981). [trans. from Fiz Gorenia Vzryvy 15(5) pp. 102108 (1981).]Google Scholar
  34. [34]
    V.N. Rusak, V.A. Ryzhanski, A. G. Ivanov, and S. N. Zaikin, Comb. Expl. Shock Waves 30(4) pp. 549–556 (1994). [trans. from Fin Gorenia Vzryvy 30(4) pp. 148–156 (1994).]Google Scholar
  35. [35] L.S. Lifshits, Stroit. Truboprovodov (3) pp. 18–20 (1968).Google Scholar
  36. [36]
    N.A. Makhutov, S.V. Serikov, and A.G. Kotousov, Strength ofMaterials 24(12) pp. 711–715 (1981). [trans. from: ProblemyProchn. 24(12) pp. 10–15 (1992).]Google Scholar
  37. [37]
    A.G. Ivanov, Strength ofMaterials 20(6) pp. 757–761(1988). [trans. from ProblemyProchn. 20(6) pp. 49–53 (1988).]Google Scholar
  38. [38]
    J.N. Goodier and I.K. Mclvor, J. AppL Mech. (2), pp. 111–119 (1964).Google Scholar
  39. [39]
    F.A. Baum, L.P. Orlenko, et al., Fizika vzryva., Nauka, Moscow (1975).Google Scholar
  40. [40]
    B.L. Averbach, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968).Google Scholar
  41. [41]
    J. Blum, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968), p. 11.Google Scholar
  42. [42]
    A.G. Ivanov, L.I. Kochkin, L.V. Vasil’ev, and V.S. Kustov, Comb. Expl. Shock Waves 10(1) pp. 112–116 (1974). [trans. from Fin Gorenia Vzryvy 10(1) pp. 127132 (1974).]Google Scholar
  43. [43]
    F. Olive, A. Nicaud, J. Marilleau, and R. Loichot, in: Mech. Prop. High Rates Strain, Proc. 2-nd Conf., Oxford, 1979. Bristol, London (1980), pp. 242–251.Google Scholar
  44. [44]
    V.K. Borisevich, V.P. Sabel’kin, et al., in: Imp. ObrabotkaMetallovDavL (9), Kharkov Aviation Institute, Kharkov, (1981) pp. 75–82.Google Scholar
  45. [45]
    A.G. Ivanov, Strength ofMaterials 8(11) pp. 1303–1306 (1976). [trans. from ProblemyProchn. 8(11) pp. 50–52 (1976).]Google Scholar
  46. [46]
    W.J. Stronge, Xiaoqing Ma, and Lanting Zhao, Int. J. Mech. Sci. 31 (11/12), pp. 811–823 (1989).CrossRefGoogle Scholar
  47. [47]
    M. Stelly, J. Legrand, and R. Dormeval: Shock Waves and High-Strain-Rate Phenomena in Metals (eds. MA. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 113–126.CrossRefGoogle Scholar
  48. [48]
    A.G. Ivanov, J. Appl. Mech Tech. Phys. (2) pp. 295–299 (1986). [trans. from Prikl. Mekh. Tekh. Fiz. (2) pp. 146–151 (1986).]Google Scholar
  49. [49]
    A.G. Ivanov, V.N. Mineev, V.I. Tsypkin, L.I. Kochkin, L.V. Vasil’ev and AO.A. Kleshchevnikov, Comb. Expl. Shock Waves 10(4) pp. 526–526 (1974). [trans. from: Fiz. Gorenia Vzryvy 10(4) pp. 603–607 (1974).]Google Scholar
  50. [50]
    A.G. Ivanov, V.N. Mineev, and E.S. Tyunkin, Izv. Akad. Nauk SSSR Ser. Mekh. Tverd. Tela. (2), pp. 183–187 (1982).Google Scholar
  51. [51]
    S.S. Grigoryan, DokL Akad. Nauk SSSR 231 (1), pp. 57–60 (1976).ADSGoogle Scholar
  52. [52]
    S.S. Grigoryan, DokL Akad. Nauk SSSR 338 (6), pp. 752–754 (1994).Google Scholar
  53. [53]
    V.P. Korobeinikov, V.I. Vlasov, and D.B. Volkov, Mat. Modelirovanie 6 (8), pp. 61–75 (1994).MathSciNetzbMATHGoogle Scholar
  54. [54]
    V.I. Kondaurov, I.N. Lomov, and V.E. Fortov, DokL Akad. Nauk SSSR 344 (2), pp. 184–188 (1995).Google Scholar
  55. [55]
    A.G. Ivanov, J. Appl. Mech Tech. Phys. 40(3) pp. 527–530 (1999). [trans. from PrikL Mekh. Tekh. Fiz. 40(3) pp. 191–195 (1999).]Google Scholar
  56. [56]
    A.G. Ivanov and V.A. Ryzhanski, Comb. ExpL Shock Waves 31(6), pp. 715–721 (1995). [trans. from: Fiz. Gorenia Vziyvy 31(6),pp. 117–124 (1995). See also correction: Fiz. Gorenia Vzryvy 32(3) pp. 726–733 (1996).]Google Scholar
  57. [57]
    A.G. Ivanov and V.A. Ryzhanski, Dokl. Akad. Nauk SSSR 353 (3), pp. 334–337 (1997).Google Scholar
  58. [58]
    A.G. Ivanov and V.A. Ryzhanski, Astonom. vestnik 32 (2), p. 164 (1998).Google Scholar
  59. [59]
    E.L. Krinov, Iron’s Rain, Nauka, Moscow (1981).Google Scholar
  60. [60]
    A.G. Ivanov and V.A. Ryzhanski, Comb. ExpL Shock Waves 35(3), pp. 326–330 (1999). [trans. from Fiz. Goreniya Vzryva 35(3), pp. 120–125 (1999).]Google Scholar
  61. [61]
    A.G. Ivanov and V.A. Ryzhanski, J. Phys. IV France 10, pp. Pr9–683—Pr9–688 (2000).Google Scholar
  62. [62]
    A.G. Ivanov and V.I. Tsypkin,Mech. Comp. Mat. (1), pp. 472–480 (1987).Google Scholar
  63. [63]
    A.G. Fedorenko, M.A.Syrunin, and A.G. Ivanov, J. Appl. Mech Tech. Phys. 34(1) pp. 123–128 (1993). [trans. from: Prikl. Mekh. Tekh. Fiz. 34(1) pp. 126–133 (1993).]Google Scholar
  64. [64]
    A.G. Ivanov, M.A. Syrunin, G.S. Telegin, L.M. Timonin, and A.G. Fedorenko, “Method to improve safety,” Patent RF Ns 2065222. Priority 21.04.94; Bull. Ns 22–10. 08. 96.Google Scholar
  65. [65]
    A.G. Ivanov, A.G. Fedorenko, and M.A. Syrunin, Comb. ExpL Shock Waves 31(2), pp. 273–274 (1995). [trans. from Fiz. Goreniya Vzryva 31(2), pp. 169–171 (1995).]Google Scholar
  66. [66]
    V.A. Ogorodnikov and A.G. Ivanov Comb. ExpL Shock Waves 37(1), (2001). [trans. from Fiz. Goreniya Vzryva 37(1), pp. 133–136 (2001).]Google Scholar
  67. [67]
    G.R. Irwin, in: Testing of high-strength metal materials for viscosity of destruction at two-dimensional strain (eds. J. Brown, J. Srawley) ASTM Tech. Publ. (1969)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. G. Ivanov

There are no affiliations available

Personalised recommendations