Shear Strength and Viscosity of Metals in Shock Waves

  • P. V. Makarov
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Elastoplastic deformation phenomena observed when metals are subjected to shock-wave loading have been investigated theoretically and experimentally for over fifty years and remain topical today for the following reasons. First, shock-wave experimental techniques give unique information about fundamental physical mechanisms of high-rate plastic deformation because the shock-wave amplitudes are precisely controlled, leading to control of the plastic strain, particle velocity, total and plastic strain rates, etc. Second, relaxation processes are most conspicuous in shock waves because the deformation rate is close to the rate at which the stress relaxes. This allows one to study the stress relaxation history resulting from both the development of strain through the wave front and the evolution of the material defect structure and its self-organization during the shock-wave loading. Finally, solutions are in demand for many applied problems including armor ballistics, explosive welding, and containment of explosive events.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.V. Al’tshuler, Sov. Phys.-Usp. 8 (1), pp. 52–91, (1965).Google Scholar
  2. L.V. Al’tshuler, Usp. Fiz. Nauk 85 (2), pp. 197–258 (1965).Google Scholar
  3. [2]
    L.V. Al’tshuler, D.M. Tarasov, M.P. Speranskaya, 13 (5), p. 95 (1962).Google Scholar
  4. L.V. Al’tshuler, D.M. Tarasov, M.P. Fiz. Met. Metall. 13 (5), p. 738 (1962).Google Scholar
  5. [3]
    L. V.AI’tshuler, M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov, Comb. ExpL Shock Waves 35 (1), pp. 92–96 (1999).Google Scholar
  6. L. V.AI’tshuler, M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov, Fiz. Gor. Vzr. 35 (1), pp. 102–107 (1999).Google Scholar
  7. [4]
    M.A. Meyers and L.E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 121–151.CrossRefGoogle Scholar
  8. [5]
    M.A. Mogilevskii, Mechanisms of Strain at Fracture by Shock Waves, Dep. No. 2830–80, VINITI, (1980).Google Scholar
  9. [6]
    G.I.Kanel, S.V. Razorenov, and V.E. Fortov, Sov. Phys-DokL(Physics) 29 (3), pp. 241–242 (1984).Google Scholar
  10. G.I.Kanel, S.V. Razorenov, and V.E. Fortov, Dokl. Akad. Nauk SSSR, Ser. tekhn. 275, pp. 369–372. (1984).Google Scholar
  11. [7]
    G.I. Kanel, and V.E. Fortov, Uspekhi mechanics 10 (3), pp. 3–81 (1987).Google Scholar
  12. [8]
    T.M. Sobolenko (ed.), High-Speed Impact: Hardening ofMetals and Alloys by Shock Waves, Sib. otd. AN SSSR. Novosibirsk: Nil hydrodynamics, (1985).Google Scholar
  13. [9]
    N.Kh. Akhmadeev, Dynamic Fracture of Solid Bodies in Stress Waves, Ufa: Izdat BFAN SSSR, (1988).Google Scholar
  14. [10]
    G.V. Stepanov, Behaviour of Structural Materials in Elastoplastic Relief Waves, Naykova Dymka, Kiev, (1978).Google Scholar
  15. [11]
    G.V. Stepanov, Elastoplastic Deformation ofMetals Under the Action of Pulsed Loading, Naykova Dymka, Kiev, (1979).Google Scholar
  16. [12]
    J. Friedel, Dislocations, Pergamon, New York, 1964.MATHGoogle Scholar
  17. [13]
    C. Kittel, Introduction to Solid State Physics, Wiley, New York (1967).Google Scholar
  18. [14]
    L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 202–241.Google Scholar
  19. [15]
    T. Svensson: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 164–176.Google Scholar
  20. [16]
    L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 260–276.Google Scholar
  21. [17]
    J.M. Kelly and P.P. Gillis, J. Appl. Phys. 38 (10), pp. 4044–4046 (1967).ADSCrossRefGoogle Scholar
  22. [18]
    T.E. Ardvisson, Y.M. Gupta, and G.E. Duvall, J. Appl. Phys. 46 (10), pp. 4474–4478 (1975).ADSCrossRefGoogle Scholar
  23. [19]
    R.J. Clifton, in: Shock Compression of Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier, Amsterdam, pp. 105–110.Google Scholar
  24. [20]
    R. Fowles and R.F. Williams, J.App L Phys. 41 (1), pp. 360–363 (1970).ADSCrossRefGoogle Scholar
  25. [21]
    J.R. Amy, L.C. Chhabildas, and J.L. Wise: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 427–431.Google Scholar
  26. [22]
    J.N. Johnson and L.M. Barker, J. Appl. Phys. 40 (11), pp. 4321–4334 (1969).ADSCrossRefGoogle Scholar
  27. [23]
    P.J. Chen, R.A. Graham, and L. Davison, J. Appl. Phys. 43 (12), pp. 5021–5027 (1972).ADSCrossRefGoogle Scholar
  28. [24]
    K.H. Hartman, H.D. Kuntse, and L.V. Meyer: Shock Waves and High-StrainRate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 276–282.Google Scholar
  29. [25]
    R.A. Graham, in: Shock Waves and High-Strain Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 184–192.Google Scholar
  30. [26]
    J.T. Fourie, Phil. Mag. 21 (173), pp. 977–987 (1970).Google Scholar
  31. [27]
    L.E. Murr, O.T. Inal, and A.A. Morales, Acta Met. 24(3), pp. 261–270 (1976).Google Scholar
  32. [28]
    K.P. Staudhammer, S.E. Frantz, S.S. Hecker, and L.E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 282–294.Google Scholar
  33. [29]
    H.K. Rogers and K.V. Shastri: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 301–309.Google Scholar
  34. [30]
    D.P. Dandekar and A.G. Martin: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 309–318.Google Scholar
  35. [31]
    L.M. Barker, in: Shock Compression of Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier, Amsterdam, (1984), pp. 217–224.Google Scholar
  36. [32]
    L.C. Chhabildas, and L.M. Barker, in: Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, (1988), pp. 111–114.Google Scholar
  37. [33]
    W.C. Moss, J. Appl. Phys. 57 (5), pp. 1665–1670 (1985).Google Scholar
  38. [34]
    W.C. Moss, J. Appl. Phys. 55 (7), pp. 2741–2746 (1984).Google Scholar
  39. [35]
    J.R. Asay and L.C. Chhabildas, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 417–431.Google Scholar
  40. [36]
    D.E. Grady and J.R. Asay, J. Appl. Phys. 53 (11), pp. 7350–7354 (1982).ADSCrossRefGoogle Scholar
  41. [37]
    D.E. Grady, J. de Physique 1V 1, pp. 653–660 (1991).Google Scholar
  42. [38]
    J. Lipkin and J.R. Amy, J. AppL Phys. 48 (1), pp. 182–189 (1977).ADSCrossRefGoogle Scholar
  43. [39]
    L.C. Chhabildas, J.L. Wise, and J.R. Amy: Shock Waves in Condensed Matter— 1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 422–426.Google Scholar
  44. [40]
    L.M. Barker and R.E. Hollenbach, J. AppL Phys. 45 (11), pp. 4872–4887 (1974).ADSCrossRefGoogle Scholar
  45. [41]
    D.C. Wallace, Phys. Rev. B 22 (4), pp. 1477–1484 (1980).Google Scholar
  46. [42]
    D.C. Wallace, Phys. Rev. B 24 (10), pp. 5597–5605 (1981).Google Scholar
  47. [43]
    P.V. Makarov, Doklady 1V All-Union conference on detonation. M.: O1KhPh AN SSSR, 1987. V. 2. P. 115–121.Google Scholar
  48. [44]
    L.L Sedov,Mechanics of Úhe Solid State,Nauka, Moscow, (1983).Google Scholar
  49. [45]
    B.L.Rozhdestvenskii and N.N.Ynenko, Systems of QuasilinearEquations and Applications to Gas Dynamics, Nauka, Moscow, (1977).Google Scholar
  50. [46]
    A.R. Champion and R.W. Rohde, J. Appl. Phys. 41 (5), pp. 2213–2222 (1970).ADSCrossRefGoogle Scholar
  51. [47]
    D.C. Wallace, Phys. Rev. B 22 (4), pp. 1495–1502 (1980).Google Scholar
  52. [48]
    J.J. Gilman, The Microdynamic Theory ofPlasticity,Metallurgia, pp. 18–37 (1972).Google Scholar
  53. [49]
    J.M. Kelly and P.P. Gillis, J. Appl. Phys. 45 (3), pp. 1091–1096 (1974).ADSCrossRefGoogle Scholar
  54. [50]
    P.V. Makarov and V.A. Skripnyik, On the Influence of Heterogeneous Nucleation of Dislocations on Attenuation of an Elastic Precursor in Metals, Deposit No. 5411–82, VINITI, (1982). 33 p.Google Scholar
  55. [51]
    J.E. Vorthman and G.E. Duvall, J. Appl.Phys. 53 (5), pp. 3607–3615 (1982).ADSCrossRefGoogle Scholar
  56. [52]
    L. Davison, A.L. Stevens, and M.E. Kipp, J. Mech. Phys. Solids 1, p. 25 (1977).Google Scholar
  57. [53]
    P.V. Makarov, Comb. Expl. Shock Waves 23 (1), pp. 19–25 (1987).CrossRefGoogle Scholar
  58. P.V. Makarov, Fiz. Gor. Vzr. 23 (1), pp. 22–28 (1987).Google Scholar
  59. [54]
    P.V. Makarov and V.A. Skripnyik, in: Mechanics of Continuous States, Izdat Tomsk Univ., Tomsk (1983), pp. 123–131.Google Scholar
  60. [55]
    D. Gerlich and S. Hart, J. Appl. Phys. 55 (4), pp. 880–884 (1983).ADSCrossRefGoogle Scholar
  61. [56]
    F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 38 (13), pp. 5395–5403 (1967).CrossRefGoogle Scholar
  62. [57]
    R. Kinslow (ed.), High-Velocity Impact Phenomena, Academic Press, New York, (1970).Google Scholar
  63. [58]
    D.J. Steinberg, S.G. Cochran, and M.W. Guinan, J. Appl. Phys. 51 (3), pp. 1498–1504 (1980).ADSCrossRefGoogle Scholar
  64. [59]
    A.F. Guillermet, J. Phys. Chem. Solids. 47 (6), pp. 605–607 (1986).Google Scholar
  65. [60]
    M.W. Guinan and D.J. Steinberg, J. Phys. Chem. Solids 35, pp. 1501–1512 (1974).ADSCrossRefGoogle Scholar
  66. [61]
    J.P. Romain, A. Migault, and J. Jacquesson, J. Phys. Chem. Solids 37 (12), pp. 1159–1165 (1976).ADSCrossRefGoogle Scholar
  67. [62]
    P.V.Makarov and V.A. Skripnyik, Modification of Yilkinson’s Difference Plan for Calculation of Loading Waves in a Material with Relaxation Processes, Dep. No. 394–82,VINITI, (1982). 24 p.Google Scholar
  68. [63]
    R.D. Richtmeyer and K.W. Morton, Difference Methods for Initial-value Problems, Interscience, New York (1967).Google Scholar
  69. [64]
    R.J. Clifton and X. Markensoff, J. Mech. Phys. Solids 29 (3), pp. 227–251 (1981).ADSMATHCrossRefGoogle Scholar
  70. [65]
    P.J.A. Fuller and J.H. Price, Brit. J. Appl. Phys. 2, Ser. 2, pp. 275–286 (1969).ADSGoogle Scholar
  71. [66]
    Z. Rosenberg, Y. Partom, and D. Yasiv, J. Appl. Phys. 56 (1), pp. 143–146 (1984).ADSCrossRefGoogle Scholar
  72. [67]
    W. Mock, J.H. Holt, and W.H. Holt, J. Appl. Phys. 53 (2), pp. 5660–5668 (1982).ADSCrossRefGoogle Scholar
  73. [68]
    J.R. Rice, J. Mech. Phys. Solids 19, pp. 433–455 (1971).Google Scholar
  74. [69]
    L.V. A1’tshuler and B.S. Chekin, J. Appl. Mech Tech. Phys. 28 (6), pp. 910–918 (1987).ADSCrossRefGoogle Scholar
  75. L.V. A1’tshuler and B.S. Chekin, Zh. Prikl. Mekh. Tekh. Fiz. 28 (6), pp. 119–128 (1987).Google Scholar
  76. [70]
    Yu.V. Bat’kov, S.A. Novikov, and A.V. Chernov, Comb. Expl. Shock Waves 22 (2), pp. 238–244 (1986).CrossRefGoogle Scholar
  77. Yu.V. Bat’kov, S.A. Novikov, and A.V. Chernov, Fiz. Gor. Vzr. 22 (2), pp. 114–120 (1986).Google Scholar
  78. [71]
    Yu.V. Bat’kov, B.L. Glushak, and S.A. Novikov, Comb. Expl. Shock Waves 25 (5), pp. 635–640 (1989).CrossRefGoogle Scholar
  79. Yu.V. Bat’kov, B.L. Glushak, and S.A. Novikov, Fiz. Gor. Vzr. 25 (5), pp. 126–132 (1989).Google Scholar
  80. [72]
    Yu. V. Bat’kov, S.A. Novikov, L.M. Sinitzyna, and A.V. Chemov, Strength of Materials (5), p. 60 (1981).Google Scholar
  81. Yu. V. Bat’kov, S.A. Novikov, L.M. Sinitzyna, and A.V. Chemov, Problemi Prochnosty (5), pp. 126–132 (1981).Google Scholar
  82. [73]
    G.R. Cowan, Trans. Met. Soc. AIME 233, pp. 1120–1130 (1965).Google Scholar
  83. [74]
    D.B. Hayes and D.E. Grady, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and RA. Graham) American Institute of Physics, New York, (1982), p. 412–416.Google Scholar
  84. [75]
    J.M. Kelly, Int. J. Solids Structures 7, pp. 1211–1217 (1971).Google Scholar
  85. [76]
    C.H. Li and R.J. Clifton, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and RA. Graham) American Institute of Physics, New York, (1982), pp. 360–366.Google Scholar
  86. [77]
    Y. Maron and A.E. Blaugrund, J. Appt Phys. 53 (1), pp. 356–364 (1982).ADSCrossRefGoogle Scholar
  87. [78]
    H. Mecking and U.F. Kocks, Acta Met 29 (11), pp. 1865–1877 (1981).CrossRefGoogle Scholar
  88. [79]
    D.L. Tonks, J. AppL Phys. 70 (8), pp. 4233–4237 (1991).Google Scholar
  89. [80]
    D.L. Tonks, J. AppL Phys. 66 (5), pp. 1951–1960 (1989).Google Scholar
  90. [81]
    J.R. Amy and L.C. Chhabildas: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 110–120.Google Scholar
  91. [82]
    M.A. Meyers, H.D. Kuntze, and K. Safert: Shock Waves and High-Strain Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 61–67.CrossRefGoogle Scholar
  92. [83]
    P. Pejin and A. Savchuk, in: Problems of the Theory of Plasticity and Creep (ed. Shapiro) Mir, Moscow (1979), pp. 94–202.Google Scholar
  93. [84]
    V.P. Glazurin and T.M. Platova, The Engineering Physics Collection, Tomsk: Izdat Tomsk..Univ., (1987), pp. 101–109.Google Scholar
  94. [85]
    L.V. Al’tshuler, M.I. Brazhnik, and G.S. Telegin, J. Appt Mech Tech. Phys. 12 pp. 921–926 (1971).ADSCrossRefGoogle Scholar
  95. L.V. Al’tshuler, M.I. Brazhnik, and G.S. Telegin, Prik L Mekh. Tekh. Fiz. 6, pp. 159–166 (1971).Google Scholar
  96. [86]
    J.L. Wise, L.C. Chhabildas, and J.R. Amy, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 417–421.Google Scholar
  97. [87]
    C.S. Coffey and R.W. Armstrong: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 89–97.Google Scholar
  98. [88]
    J. Krejci, J. Brezina, J. Buchar, and S. Rolc, J. de Physique 1V 1, pp. 667–673 (1991).Google Scholar
  99. [89]
    D.L. Moss, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 30–40.Google Scholar
  100. [90]
    D.F. Meskal and M. Azrin: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 67–89.Google Scholar
  101. [91]
    S.M. Doreuvily, V. Gopinethen, and V.K. Venkatesh, in: Shock Waves and HighStrain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 294–301.Google Scholar
  102. [92]
    V.P. Glazurin, P.V. Makarov, and T.M. Platova, in: Applied Problems of Deformable Bodies, Izdat Tomsk Univ., Tomsk, (1980), pp. 14–18.Google Scholar
  103. [93]
    P.V. Makarov, T.M. Platova, and V.A. Skripnyik, Comb. Expl. Shock Waves 19 (2), p. 645 (1983).CrossRefGoogle Scholar
  104. P.V. Makarov, T.M. Platova, and V.A. Skripnyik, Fiz. Gor. Vzr. 5, pp. 123–126 (1983).Google Scholar
  105. [94]
    L.C. Chhabildas and J.R. Asay, J. AppL Phys. 50 (4), pp. 2749–2756 (1979).ADSCrossRefGoogle Scholar
  106. [95]
    H.L. Chang and Y. Horie, J. Appl. Phys. 43 (8), pp. 3362–3366 (1972).Google Scholar
  107. [96]
    Y. Partom: Shock Compression of Condensed Matter-1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, (1990), pp. 317–319.Google Scholar
  108. [97]
    L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 260–276.Google Scholar
  109. [98]
    G.W. Swan and G.E. Duvall, J. Mech. Phys. Solids 21, pp. 215–227 (1973).ADSMATHCrossRefGoogle Scholar
  110. [99]
    J.R. Asay and D.B. Hayes, J. Appt. Phys. 46 (11), pp. 4789–4800 (1975).ADSCrossRefGoogle Scholar
  111. [100]
    Yu.I. Mesheryakov, A.K. Divakov, and V.G. Kudrushov, Comb. Expl. Shock Waves 24 (2), pp. 241–248 (1988).CrossRefGoogle Scholar
  112. Yu.I. Mesheryakov, A.K. Divakov, and V.G. Kudrushov, Fiz. Gor. Vzr. 24 (2), pp. 126–134 (1988).Google Scholar
  113. [101]
    Yu.I. Mesheryakov, Trans. Int. Cont. on New Methods in Physics and Mechanics of a Deformable Solid Body, Izdat Tomsk Univ., Tomsk, (1990), pp. 33–43.Google Scholar
  114. [102]
    Yu.I. Mesherykov and S.A. Atroshenko, Izv. vuzov. Ser. physics (4), pp 105–123 (1992).Google Scholar
  115. [103]
    S.K. Godunov, Devices of a Mechanics offContinuua, Nauka, Moscow, (1978). 303 p. (in Russian)Google Scholar
  116. [104]
    Ya.B. Zel’dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. I (1966) and Vol. II (1967), Academic Press, New York. Reprinted in a single volume by Dover Publications, Mineola, New York (2002).Google Scholar
  117. [105]
    D.J. Steinberg, J.AppL Phys. 74 (6), pp. 3827–3831 (1993).Google Scholar
  118. [106]
    D.J. Steinberg, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory Report, (1991), 39 p.Google Scholar
  119. [107]
    J.W. Swegle and D.E. Grady, J. Appl. Phys. 58 (2), pp. 692–701 (1985).ADSCrossRefGoogle Scholar
  120. [108]
    J.W. Taylor, J. Appt. Phys. 35 (36), p. 3440 (1965).Google Scholar
  121. [109]
    S.G. Cochran and D. Banner, J. Appl. Phys 48, pp. 2729–2737 (1977).ADSCrossRefGoogle Scholar
  122. [110]
    N.Kh. Akhmadeev, N.A. Akhmadeev, and R.I. Nigmatulin, J. Appt. Mech Tech. Phys. 25 (6), pp. 908–914 (1984).ADSCrossRefGoogle Scholar
  123. N.Kh. Akhmadeev, N.A. Akhmadeev, and R.I. Nigmatulin, Zh. Prikl. Mekh. Tekh. Fiz. 25 (6), pp. 113–119 (1984).Google Scholar
  124. [111]
    K.W. Schuler and J.W. Nunziato, J. Appl. Phys. 47 (7), pp. 2995–2998 (1976).ADSCrossRefGoogle Scholar
  125. [112]
    J.W. Nunziato and K.W. Schuler, J. Appt. Phys. 44 (10), pp. 4774–4775 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • P. V. Makarov

There are no affiliations available

Personalised recommendations