Measurement of Fatigue Limit in Silicate Glasses

  • V. M. Sglavo
  • D. J. Green


Some studies on sub-critical growth in glass and ceramics have shown the existence of a lower limit of the applied stress intensity factor where the crack propagation tends to zero. This is usually defined as the fatigue limit or threshold stress intensity factor (K th ).Various testing methodologies have been suggested in the past for measuring this limit even if the identification of a load level corresponding to a velocity equal to zero is still questionable. In this paper, results obtained recently for various silicate glasses using different experimental approaches are compared. Measurements are performed by the interrupted static fatigue test and an indentation technique on soda-lime-silica, aluminosilicate, borosilicate and silica glass. Both techniques point out the existence of a fatigue limit in humid environment.


Stress Intensity Factor Silicate Glass Fatigue Limit Silica Glass Indentation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D J. Green, Introduction to Mechanical Properties of Ceramics,Cambridge University Press, Cambridge, UK (1998).Google Scholar
  2. 2.
    B. R. Lawn, Fracture of Brittle Solids: Second Edition, Cambridge University Press, Cambridge, UK (1993).CrossRefGoogle Scholar
  3. 3.
    E.B. Shand, Strength of Glass–The Griffith Method Revised, J. Am. Ceram. Soc., 48, 1, 43–49 (1965).CrossRefGoogle Scholar
  4. 4.
    W.B. Hillig, and R.J. Charles, Surfaces, Stresses-Dependent Surface Reactions and Strength, in: High Strength Materials, V.F. Zakay, ed., John Wiley and Sons, New York, 683–705 (1965).Google Scholar
  5. 5.
    S.M. Wiederhorn and L.H. Bolz, Stress Corrosion and Static Fatigue of Glass, J. Am. Ceram. Soc., 53, 10, 543–48 (1970).CrossRefGoogle Scholar
  6. 6.
    A.G. Evans, A Simple Method for Evaluating Slow Crack Growth in Brittle Materials, Int. J. Fract., 9, 3, 267–75 (1973).CrossRefGoogle Scholar
  7. 7.
    B. J. S. Wilkins and R. Dutton, Static Fatigue Limit with Particular Reference to Glass, J. Am. Ceram. Soc., 59, 3–4, 108–12 (1976).Google Scholar
  8. 8.
    T. A. Michalske, The Stress Corrosion Limit: Its Measurement and Application, in: Fracture Mechanics of Ceramics, Vol. 5, R. C. Bradt et al., ed., Plenum Press, New York, 277–89 (1983).Google Scholar
  9. 9.
    R. F. Cook, Influence of Crack Velocity Thresholds on Stabilized Non-Equilibrium Fracture, J Appl. Phys., 65, 1902–10 (1989).CrossRefGoogle Scholar
  10. 10.
    K. Wan, S. Lathabai, and B.R. Lawn, Crack Velocity Functions and Threshold in Brittle Solids, J. Eur. Ceram. Soc., 6, 259–68 (1990).CrossRefGoogle Scholar
  11. 11.
    R. F. Cook and E. G. Liniger, Kinetics of Indentation Cracking in Glass, J. Am. Ceram. Soc., 76, 1096–1106 (1993).CrossRefGoogle Scholar
  12. 12.
    V. M. Sglavo and D. J. Green, Threshold Stress Intensity Factor for Soda Lime Silicate Glass by Interrupted Static Fatigue Test, J. Eur. Ceram. Soc., 16, 645–51 (1996).CrossRefGoogle Scholar
  13. 13.
    V. M. Sglavo, D. J. Green, S. W. Martz and R. E. Tressler, in: Fracture Mechanics of Ceramics, Vol. 12, R. C. Bradt et al., ed., Plenum Press, New York, 167–77 (1996).Google Scholar
  14. 14.
    V.M. Sglavo and S. Renzi, Fatigue Limit in Borosilicate Glass by Interrupted Static Fatigue Test, Phys. Chem. Glasses, 40, 2, 79–84 (1999).Google Scholar
  15. 15.
    V. M. Sglavo and D. J. Green, Indentation Determination of Fatigue Limits in Silicate Glasses, J. Am. Ceram. Soc., 00 (1999).Google Scholar
  16. 16.
    V. M. Sglavo and D. J. Green, The Interrupted Static Fatigue Test for Evaluating Threshold Stress Intensity Factor in Ceramic Materials: A Numerical Analysis, J. Eur. Ceram. Soc., 15, 777–85 (1995).CrossRefGoogle Scholar
  17. 17.
    V. M. Sglavo and D. J. Green, Subcritical Growth of Indentation Median Cracks in Soda-Lime-Silica Glass, J Am. Ceram. Soc., 78, 3, 650–56 (1995).CrossRefGoogle Scholar
  18. 18.
    A. Arora, D. B. Marshall and B. R. Lawn, Indentation Deformation/Fracture of Normal and Anomalous Glasses, J. Non-Cryst. Solids, 31, 415–28 (1979).CrossRefGoogle Scholar
  19. J. E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chemistry, Cambridge, UK (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • V. M. Sglavo
    • 1
  • D. J. Green
    • 2
  1. 1.Dipartimento di Ingegneria dei MaterialiUniversità di TrentoTrentoItaly
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations