Advertisement

Latent item predictors with fixed effects

  • Dirk J. M. Smits
  • Stephen Moore
Part of the Statistics for Social Science and Public Policy book series (SSBS)

Abstract

The Rasch model (Rasch, 1960) and the linear logistic test model (LLTM, Fischer, 1973, 1977) are two commonly used item response models. Both models are discussed in Chapter 2. The Rasch model assumes item indicators as predictors, so that each item has a specific effect, the weight of the corresponding item indicator. The LLTM explains these effects in terms of item properties, or in other words item properties are used as item predictors. Therefore, the LLTM may be considered an item explanatory model, in contrast with the Rasch model which is descriptive.

Keywords

Item Type Aggressive Reaction Item Parameter Random Weight Norm Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechger, T.M., Verhelst, N.D., & Verstralen, H.H.F.M. (2001). Identifiability of nonlinear logistic test models. Psychometrika, 66, 357–371.MathSciNetCrossRefGoogle Scholar
  2. Bechger, T.M., Verstralen, H.H.F.M., & Verhelst, N.D. (2002). Equivalent linear logistic test models. Psychometrika, 67, 123–136.MathSciNetCrossRefGoogle Scholar
  3. Birnbaum, A. (1968). Some latent trait models. In F.M. Ford & M.R. Novick (Eds), Statistical Theories of Mental Test Scores (pp. 397–424). Reading: Addison-Wesley.Google Scholar
  4. Butter, R. (1994). Item response models with internal restrictions on item difficulty. Unpublished doctoral dissertation, K.U.Leuven (Belgium).Google Scholar
  5. Butter, R., De Boeck, P., & Verhelst, N.D. (1998). An item response model with internal restrictions on item difficulty. Psychometrika, 63, 1–17.CrossRefGoogle Scholar
  6. Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–515.MATHCrossRefGoogle Scholar
  7. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.CrossRefGoogle Scholar
  8. Fischer, G.H. (1977). Linear logistic trait models: Theory and applications. In H. Spada & W.F. Kempf (Eds), Structural Models of Thinking and Learning (pp. 203–225). Bern, Switzerland: Huber.Google Scholar
  9. Maris, G., & Bechger, T. (2003). Equivalent MIRID models. Measurement and Research Department Report 2003–2. Arnhem, The Netherlands: CITO.Google Scholar
  10. McCulloch, C.E., & Searle, S.R. (2001). Generalized Linear, and Mixed Models. New York: Wiley.MATHGoogle Scholar
  11. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen, Denmark: Danish Institute for Educational research.Google Scholar
  12. Smits, D.J.M., & De Boeck, P. (2003). A componential model for guilt. Multivariate Behavioral Research, 38, 161–188.CrossRefGoogle Scholar
  13. Smits, D.J.M., De Boeck, P., Verhelst, N., & Butter, R. (2001). The MIRID program (version 1.0) (Computer program and manual). K.U.Leuven, Belgium.Google Scholar
  14. Smits, D.J.M., De Boeck, P., & Verhelst, N.D. (2003). Estimation of the MIRID: A program and a SAS based approach. Behavior Research Methods, Instruments, and Computers, 35, 537–549.CrossRefGoogle Scholar
  15. Verhelst, N.D., & Glas, C.A.W. (1995). One parameter logistic model. In G.H. Fischer & I.W. Molenaar (Eds), Rasch Models: Foundations, Recent Developments and Applications (pp. 215–238). New York: Springer.Google Scholar
  16. Verhelst, N.D., Glas, C.A.W., & Verstralen, H.H.F.M. (1994). One Parameter Logistic Model (Computer program and manual). Arnhem, The Netherlands: CITO.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Dirk J. M. Smits
  • Stephen Moore

There are no affiliations available

Personalised recommendations