Advertisement

Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems

  • Yuri A. Kuznetsov
Part of the Applied Mathematical Sciences book series (AMS, volume 112)

Abstract

In this chapter we introduce and discuss the following fundamental notions that will be used throughout the book: topological equivalence of dynamical systems and their classification, bifurcations and bifurcation diagrams, and topological normal forms for bifurcations. The last section is devoted to the more abstract notion of structural stability. In this chapter we will be dealing only with dynamical systems in the state space X = ℝ n .

Keywords

Phase Portrait Bifurcation Diagram Invariant Manifold Unstable Manifold Global Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. Andronov, A.A. and Pontryagin, L.S. (1937), ‘Systèmes grossières’, C.R. (Dokl.) Acad. Sci. URSS (N.S.) 14, 247–251.Google Scholar
  2. Thom, R. (1972), Stabilité Structurelle et Morphogénèse, Benjamin, New York.Google Scholar
  3. Grobman, D. (1959), ‘Homeomorphisms of systems of differential equations’, Dokl. Akad. Nauk SSSR 128, 880–881. In Russian.Google Scholar
  4. Hartman, P. (1963), ‘On the local linearization of differential equations’, Proc. Amer. Math. Soc. 14, 568–573.MathSciNetMATHCrossRefGoogle Scholar
  5. Hartman, P. (1964), Ordinary Differential Equations, Wiley, New York.MATHGoogle Scholar
  6. Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.Google Scholar
  7. Arnol’d, V.I. (1973), Ordinary Differential Equations, MIT Press, Cambridge, MA.Google Scholar
  8. Hale, J. and Koçak, H. (1991), Dynamics and Bifurcations, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  9. Hadamard, J. (1901), ‘Sur l’itération et let solutions asymptotiques des équations diffiérentialles’, Proc. Soc. Math. France 29, 224–228.MATHGoogle Scholar
  10. Perron, O. (1930), ‘Die stabilitätsfrage bei differentialgleichungen’, Math. Z. 32, 703–728.MathSciNetMATHCrossRefGoogle Scholar
  11. Kelley, A. (1967), ‘The stable, center stable, center, center unstable and unstable manifolds’, J. Differential Equations 3, 546–570.MathSciNetMATHCrossRefGoogle Scholar
  12. Hirsch, M., Pugh, C. and Shub, M. (1977), Invariant Manifolds, Vol. 583 of Lecture Notes in Mathematics, Springer-Verlag, Berlin.Google Scholar
  13. Irwin, M. (1980), Smooth Dynamical Systems, Academic Press, New York.MATHGoogle Scholar
  14. Hartman, P. (1964), Ordinary Differential Equations, Wiley, New York.MATHGoogle Scholar
  15. Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.Google Scholar
  16. Katok, A. and Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Vol. 54 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  17. Poincaré, H. (1892), Les Méthodes Nouvelles de la Méchanique Céleste, Gauthier-Villars, Paris.Google Scholar
  18. Birkhoff, G. (1935), ‘Nouvelles recherches sur les systèmes dynamiques’, Memoriae Pont. Acad. Sci. Novi. Lincaei, Ser. 3 1, 85–216.Google Scholar
  19. Smale, S. (1963), Diffeomorphisms with many periodic points, in S. Carins, ed., ‘Dif-ferential and Combinatorial Topology’, Princeton University Press, Princeton, NJ, pp. 63–80.Google Scholar
  20. Neimark, Ju.I. (1967), ‘Motions close to doubly-asymptotic motion’, Soviet Math. Dokl. 8, 228–231.Google Scholar
  21. Shil’nikov, L.P. (1967b), ‘On a Poincaré-Birkhoff problem’, Math. USSR-Sb. 3, 353–371.CrossRefGoogle Scholar
  22. Moser, J. (1973), Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.Google Scholar
  23. Vainberg, M.M. and Trenogin, V.A. (1974), Theory of Branching of Solutions of Nonlinear Equations, Noordhoff International Publishing, Leyden.Google Scholar
  24. Chow, S.-N. and Hale, J. (1982), Methods of Bifurcation Theory, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  25. Andronov, A.A. (1933), Mathematical problems of self-oscillation theory, in ‘I All-Union Conference on Oscillations, November 1931’, GTTI, Moscow-Leningrad, pp. 32–71. In Russian.Google Scholar
  26. Thom, R. (1972), Stabilité Structurelle et Morphogénèse, Benjamin, New York.Google Scholar
  27. Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G. (1973), Theory of Bifurcations of Dynamical Systems on a Plane, Israel Program for Scientific Translations, Jerusalem.Google Scholar
  28. Arnol’d, V.I. (1972), ‘Lectures on bifurcations in versal families’, Russian Math. Surveys 27, 54–123.CrossRefGoogle Scholar
  29. Takens, F. (1974a), ‘Forced oscillations and bifurcations’, Comm. Math. Inst., Rijkuniversiteit Utrecht 2, 1–111. Reprinted in Global Analysis of Dynamical Systems, Instute of Physics, Bristol, 2001, pp. 1–61.Google Scholar
  30. Arnol’d, V.I. (1983), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
  31. Arnol’d, V.I., Afraimovich, V.S., Il’yashenko, Yu.S. and Shil’nikov, L.P. (1994), Bi-furcation theory, in V.I. Arnol’d, ed., ‘Dynamical Systems V. Encyclopaedia of Mathematical Sciences’, Springer-Verlag, New York.Google Scholar
  32. Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York.MATHGoogle Scholar
  33. Arrowsmith, D. and Place, C. (1990), An Introduction to Dynamical Systems,Cambridge University Press, Cambridge.Google Scholar
  34. Wiggins, S. (1990), Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New York.Google Scholar
  35. Shil’nikov, L.P. (1970), ‘A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type’, Math. USSR-Sb. 10, 91–102.MATHCrossRefGoogle Scholar
  36. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L. (1998), Methods of Qual-itative Theory in Nonlinear Dynamics. Part I, World Scientific, Singapore.Google Scholar
  37. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L. (2001), Methods of Qual- itative Theory in Nonlinear Dynamics. Part II, World Scientific, Singapore.Google Scholar
  38. Peixoto, M. (1962), ‘Structural stability on two dimensional manifolds’, Topology 1, 101–120.MathSciNetMATHCrossRefGoogle Scholar
  39. Wiggins, S. (1990), Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New York.Google Scholar
  40. Smale, S. (1961), ‘On gradient dynamical systems’, Ann. of Math. 74, 199–206.MathSciNetMATHCrossRefGoogle Scholar
  41. Smale, S. (1963), Diffeomorphisms with many periodic points, in S. Carins, ed., ‘Dif-ferential and Combinatorial Topology’, Princeton University Press, Princeton, NJ, pp. 63–80.Google Scholar
  42. Smale, S. (1966), ‘Structurally stable systems are not dense’, Amer. J. Math. 88, 491–496.MathSciNetMATHCrossRefGoogle Scholar
  43. Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.Google Scholar
  44. Katok, A. and Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Vol. 54 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Yuri A. Kuznetsov
    • 1
    • 2
  1. 1.Department of MathematicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Institute of Mathematical Problems of BiologyRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations