Advertisement

Mineral Pneumoconioses

  • Victor L. Roggli
  • John D. Shelburne

Abstract

The term pneumoconiosis, originally coined by Zenker,1 literally means dust in the lung. Because various types of dust can be found in the lungs of virtually all adults, this term has come to mean the accumulation of abnormal amounts of dust in the lungs and the pathologic response to this dust. A great variety of dust particles have been identified which, when inhaled in sufficient amounts, are capable of producing disease in man. The sources of these particles are diverse, ranging from occupational to environmental exposures. Factors important in determining the pathologic response to a given dust exposure include the number, size, and physiochemical properties of the inhaled particles; the route and efficiency of clearance of the particles from the respiratory tract; the nature and intensity of the host’s inflammatory response to the particles deposited in the lung; the duration of the exposure and interval since initial exposure; and interactions between the inhaled particles from multiple sources and other environmental pollutants, such as cigarette smoke.

Keywords

Tungsten Carbide Crystalline Silica Asbestos Fiber Coal Worker Pneumoconiosis Coal Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zenker FA. Staubinhalations Krankheiten der lungen. 1866.Google Scholar
  2. 2.
    Brody AR, Roe MW. Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis 1983; 128: 724 – 729.PubMedGoogle Scholar
  3. 3.
    Raabe OG. Deposition and clearance of inhaled particles In: Gee JBL, Morgan WKC, Brooks SM, eds. Occupational lung disease. New York: Raven, 1984: 1 – 37.Google Scholar
  4. 4.
    Langer AM. Crystal faces and cleavage planes in quartz as templates in biological processes. Q Rev Biophys 1978; 2: 543 – 575.Google Scholar
  5. 5.
    Spencer H, ed. The pneumoconioses and other occupational lung diseases. In: Pathology of the lung. 4th ed, Vol. 1. Oxford: Pergamon Press, 1985: 413 – 510.Google Scholar
  6. 6.
    Abraham JL. Recent advances in pneumoconiosis: The pathologists’ role in etiologic diagnosis. In: Thurlbeck M, ed. The lung: structure, function, and disease. IAP Monogr. 19. Baltimore: Williams & Wilkins, 1978: 96 – 137.Google Scholar
  7. 7.
    Roggli VL, Mastin JP, Shelburne JD, Roe M, Brody AR. Inorganic particulates in human lung: relationship to the inflammatory response. In: Lynn WS, ed. Inflammatory cells and lung disease. Boca Raton: CRC Press, 1983: 29 – 62.Google Scholar
  8. 8.
    Pratt PC. Lung dust content and response in guinea pigs inhaling three forms of silica. Arch Environ Health 1983; 38: 197 – 204.PubMedGoogle Scholar
  9. 9.
    Heppleston AG: Pulmonary repair and fibrosis. In: Glynn LE, ed. Tissue repair and regeneration. Amsterdam: Elsevier/North Holland, 1981: 393 – 456.Google Scholar
  10. 10.
    Absher M, Mortara M. Effect of silica on the proliferative behavior of human lung fibroblasts. In Vitro 1980; 16: 371 – 376.PubMedGoogle Scholar
  11. 11.
    Kleinerman J. The pathology of some familiar pneumoconioses. Semin Roentgenol 1967; 2: 244 – 264.Google Scholar
  12. 12.
    Slavin RE, Swedo JL, Brandes D, Gonzalez-Vitale JC, Osornio-Vargas A. Extrapulmonary silicosis: a clinical, morphologic, and ultrastructural study. Hum Pathol 1985; 16: 393 – 412.PubMedGoogle Scholar
  13. 13.
    Kleinerman J, Green F, Laquer W, et al. Pathology 33. standards for coal workers pneumoconiosis. Arch Pathol Lab Med 1979; 103: 375 – 432.Google Scholar
  14. 14.
    Buechner HA, Ansari A. Acute silico-proteinosis. Dis Chest 1969; 55: 274 – 284.PubMedGoogle Scholar
  15. 15.
    Heppleston AG, Wright NA, Stewart JA. Experimental 35. alveolar lipoproteinosis following the inhalation of silica. J Pathol 1970; 101: 293 – 307.PubMedGoogle Scholar
  16. 16.
    Miller RR, Churg AM, Hutcheon M, Lam S. Pulmonary 36. alveolar proteinosis and aluminum dust exposure. Am Rev Respir Dis 1984; 130: 312 – 315.PubMedGoogle Scholar
  17. 17.
    Craighead JE, Vallyathan NV. Cryptic pulmonary le- sions in workers occupationally exposed to dust contain- 37. ing silica. JAMA 1980; 244: 1939 – 1941.PubMedGoogle Scholar
  18. 18.
    Adamson IYR, Bowden DH. Role of monocytes and interstitial cells in the generation of alveolar macro- phages. II. Kinetic studies after carbon loading. Lab 38. Invest 1980; 42: 518 – 524.Google Scholar
  19. 19.
    Pratt PC. Role of silica in progressive massive fibrosis. Arch Environ Health 1968; 16: 734 – 737.PubMedGoogle Scholar
  20. 20.
    Heppleston AG. The pathological anatomy of simple pneumoconiosis in coal workers. J Pathol Bacteriol 1953; 66: 235 – 246.PubMedGoogle Scholar
  21. 21.
    Rom WN, Kanner RE, Renzetti AD, et al. Respiratory 40. disease in Utah coal miners. Am Rev Respir Dis 1981; 123: 372 – 377.PubMedGoogle Scholar
  22. 22.
    Ames RG, Amandus H, Attfield M, Green FY, Vallyathan V. Does coal mine dust present a risk for lung cancer? A case-control study of U.S. coal miners. Arch Environ Health 1983; 38: 331 – 333.PubMedGoogle Scholar
  23. 23.
    Vallyathan NV, Green FHY, Rodman NF, Boyd CB, Althouse R. Lung carcinoma by histologic type in coal 42. miners. Arch Pathol Lab Med 1985; 109: 419 – 423.PubMedGoogle Scholar
  24. 24.
    Pratt PC, Kilburn KH. Extent of pulmonary pigmenta- tion as an indicator of particulate environmental air 43. pollution. Inhaled Part Vap 1971; 2: 661 – 670.Google Scholar
  25. 25.
    Watson AJ, Black J, Doig AT, Nagelschmidt G. Pneumo- coniosis in carbon electrode makers. Br J Ind Med 44. 1959; 16: 274 – 285.Google Scholar
  26. 26.
    Schepers GWH, Durkan TM. Experimental study of the effects of talc dust on animal tissue. Arch Ind Health 45. 1955; 12: 317 – 328.Google Scholar
  27. 27.
    Vallyathan NV, Craighead JE. Pulmonary pathology in workers exposed to nonasbestiform talc. Hum Pathol 1981; 12: 28 – 35.PubMedGoogle Scholar
  28. 28.
    Vallyathan NV. Talc pneumoconiosis. Respir Ther 46. 1980; 10: 34 – 39.Google Scholar
  29. 29.
    Miller A, Teirstein AS, Bader MD, Bader RA, Selikoff I J. Talc pneumoconiosis: significance of sublight-microscopic mineral particles. Am J Med 1971; 50: 395 – 402.PubMedGoogle Scholar
  30. 30.
    Tornashefski JF, Hirsch CS. The pulmonary vascular lesions of intravenous drug abuse. Hum Pathol 47. 1980; 11: 133 – 145.Google Scholar
  31. 31.
    Berner A, Gylseth B, Levy F. Talc dust pneumoconiosis. Acta Pathol Microbiol Scand 1981; 89A: 17 – 21.Google Scholar
  32. 32.
    Crouch E, Churg A. Progressive massive fibrosis of the lung secondary to intravenous injection of talc. A pathologic and mineralogic analysis. Am J Clin Pathol 1983; 80: 520 – 526.PubMedGoogle Scholar
  33. 33.
    Williams WJ: The pathology of pulmonary sarcoidosis. Proc R Soc Med 1967; 60: 986 – 988.PubMedGoogle Scholar
  34. 34.
    Abraham JL, Brambilla C. Particle size for differentiation between inhalation and injection pulmonary talco-sis. Environ Res 1980; 21: 94 – 96.PubMedGoogle Scholar
  35. 35.
    Kleinfeld M, Messite J, Zaki MH. Mortality experiences among talc workers: A follow-up study. J Occup Med 1974; 16: 345 – 349.PubMedGoogle Scholar
  36. 36.
    Sepulveda M-J, Vallyathan V, Attfield MD, Piacitelli L, Tucker JH. Pneumoconiosis and lung function in a group of kaolin workers. Am Rev Respir Dis 1983; 127: 231 – 235.PubMedGoogle Scholar
  37. 37.
    Lapenas D, Gale P, Kennedy T, Rawlings W, Dietrich P. Kaolin pneumoconiosis: radiologie, pathologic, and mineralogic findings. Am Rev Respir Dis 1984; 130: 282 – 288.PubMedGoogle Scholar
  38. 38.
    Brody AR, Craighead JE. Cytoplasmic inclusions in pulmonary macrophages of cigarette smokers. Lab Invest 1975; 32: 125 – 132.PubMedGoogle Scholar
  39. 39.
    White R, Kuhn C. Effects of phagocytosis of mineral dusts on elastase secretion by alveolar and peritoneal exudative macrophages. Arch Environ Health 1980; 35: 106 – 109.PubMedGoogle Scholar
  40. 40.
    Huber W, Saifer MG: Orgotein, the drug version of bovine Cu-Zn superoxide dismutase. I. A summary account of safety and pharmacology in laboratory animals. In: Michelson AM, McCord JM, Fridovich I, eds. Superoxide and superoxide dismutases. New York: Academic Press, 1977: 517 – 536.Google Scholar
  41. 41.
    King EJ, Harrison CV. The effects of kaolin on the lungs of rats. J Pathol Bacteriol 1948; 60: 435 – 440.Google Scholar
  42. 42.
    Sabu AP, Shanker R, Zaidi SH. Pulmonary response to kaolin, mica and talc in mice. Exp Pathol 1978; 16: 276 – 282.Google Scholar
  43. 43.
    Eisenbud M. Origins of the standards for control of beryllium disease (1947-1949). Environ Res 1982; 27: 79 – 88.PubMedGoogle Scholar
  44. 44.
    Katzenstein A-L A, Askin FB: Pneumoconiosis: In: Surgical pathology of non-neoplastic lung disease. Philadelphia: WB Saunders, 1982: 101 – 102.Google Scholar
  45. 45.
    Mancuso TF. Occupational lung cancer among beryllium workers. In: Lernen R, Dement DM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 463 – 471.Google Scholar
  46. 46.
    Infante PF, Wagoner JK, Sprince NL. Bronchogenic cancer and nonneoplastic respiratory disease associated with beryllium exposure. In: Lemen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 473 – 482.Google Scholar
  47. 47.
    Morgan WKC, Seaton A. Occupational lung diseases, 2d ed. Philadelphia: WB Saunders, 1984: 449 – 497.Google Scholar
  48. 48.
    Vorwald AJ. The beryllium problem: the chronic or delayed disease: pathologic aspects. In: Vorwald AJ, ed. Pneumoconiosis: beryllium, bauxite fumes, compensation. New York: Hoeber, 1950: 190 – 207.Google Scholar
  49. 49.
    Vallyathan V, Bergeron WN, Robichaux PA, Craighead JE. Pulmonary fibrosis in an aluminum arc welder. Chest 1982; 81: 372 – 374.PubMedGoogle Scholar
  50. 50.
    Chen W J, Monnat RI, Chen M, Moffett NK. Aluminum induced pulmonary granulomatosis. Hum Pathol 1978; 9: 705 – 711.PubMedGoogle Scholar
  51. 51.
    Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol 1982; 13: 694 – 699.PubMedGoogle Scholar
  52. 52.
    Stern RM. The assessment of risk: application to the welding industry lung cancer. The International Institute of Welding Commission, VIII: Safety and Health Doc. IIW, VIII:2034–2083. Copenhagen: Danish Welding Institute, 1983: 1 – 26.Google Scholar
  53. 53.
    Vallyathan NV, Green FHY, Craighead JE. Recent advances in the study of mineral pneumoconiosis. Pathol Annu 1980; 15: 77 - 104.PubMedGoogle Scholar
  54. 54.
    Gardner LU. Studies on the relationship of mineral dusts to tuberculosis. Am Rev Tuberc 1923; 71: 344 – 357.Google Scholar
  55. 55.
    Funahashi A, Schlueter DP, Pintar K, Siegesmund KA, Mandel GS, Mandel NS. Pneumoconiosis in workers exposed to silicon carbide. Am Rev Respir Dis 1984; 129: 635 – 640.PubMedGoogle Scholar
  56. 56.
    Gross P, de Treville RTP, Cralley LJ, Davis JMG. Pulmonary ferruginous bodies: development in response to filamentous dusts and a method of isolation and concentration. Arch Pathol 1968; 85: 539 – 546.PubMedGoogle Scholar
  57. 57.
    Sprince NL, Chamberlin RI, Hales CA, Weber AL, Kazemi H. Respiratory disease in tungsten carbide production workers. Chest 1984; 86: 549 – 557.PubMedGoogle Scholar
  58. 58.
    Schepers GWH. The biological action of tungsten carbide and cobalt: studies on experimental pulmonary histopathology. Arch Ind Health 1955; 12: 140 – 146.Google Scholar
  59. 59.
    Coates E0, Watson JHL. Diffuse interstitial lung disease in tungsten carbide workers. Ann Intern Med 1971; 75: 709 – 716.PubMedGoogle Scholar
  60. 60.
    Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979; 5: 290 – 296.PubMedGoogle Scholar
  61. 61.
    Crouch E, Churg A. Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 1984; 8: 109 – 116.PubMedGoogle Scholar
  62. 62.
    Golden EB, Warnock ML, Hulett LD, Churg AM. Fly ash lung: a new pneumoconiosis? Am Rev Respir Dis 1982; 125: 108 – 112.PubMedGoogle Scholar
  63. 63.
    Fisher GL, Chrisp CE, Raabe OG. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant. Science 1979; 204: 879 – 881.PubMedGoogle Scholar
  64. 64.
    Hill JO, Rothenberg SJ, Kanapilly GM, Hanson RL, Scott BR. Activation of immune complement by fly ash particles from coal combustion. Environ Res 1982; 28: 113 – 122.PubMedGoogle Scholar
  65. 65.
    Roggli VL, Pratt PC, Brody AR. Asbestos content of lung tissue in asbestos-associated diseases: a study of 110 cases. Br J Ind Med 1986; 43: 18 – 28.PubMedGoogle Scholar
  66. 66.
    Martin TR, Chi EY, Covert DS, et al. Compared effects of inhaled volcanic ash and quartz in rats. Am Rev Respir Dis 1983; 128: 144 – 152.PubMedGoogle Scholar
  67. 67.
    Vallyathan V, Robinson V, Reasor M, Stettler L, Bernstein R. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung. J Toxicol Environ Health 1984; 14: 641 – 654.PubMedGoogle Scholar
  68. 68.
    Raub JA, Hatch GE, Mercer RR, Grady M, Hu P-C. Inhalation studies of Mt. St. Helens volcanic ash in animals: II. Lung function, biochemistry, and histology. Environ Res 1985; 37: 72 – 83.Google Scholar
  69. 69.
    Craighead JE, Adler KB, Emerson RJ, Mossman BT, Woodworth CD. Health effects of Mount St. Helens volcanic dust. Lab Invest 1983; 48: 5 – 12.PubMedGoogle Scholar
  70. 70.
    Churg A. Nonasbestos pulmonary mineral fibers in the general population. Environ Res 1983; 31: 189 – 200.PubMedGoogle Scholar
  71. 71.
    Baker D, Kupke KG, Ingram P, Roggli VL, Shelburne JD. Microprobe analysis in human pathology. In: Johari 0, ed. Scanning Electron Microscopy, Vol. II. Chicago: SEM, 1985: 659 – 680.Google Scholar
  72. 72.
    Lockey JE. Nonasbestos fibrous minerals. Clin Chest Med 1981; 2: 203 – 218.PubMedGoogle Scholar
  73. 73.
    Wright GW, Kuschner M. The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH, ed. Inhaled Particles IV. Oxford: Pergamon, 1977: 455 – 474.Google Scholar
  74. 74.
    Stanton MF, Layard M, Tegeris A, et al. Relations of particle dimensions to carcinogenicity in amphibole asbestos and other fibrous minerals. J Natl Cancer Inst 1981; 67: 965 – 975.PubMedGoogle Scholar
  75. 75.
    Morgan A, Holmes A, Davison W. Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg 1982; 25: 317 – 331.PubMedGoogle Scholar
  76. 76.
    Enterline PE, Marsh GM. Environment and mortality of workers from a fibrous glass plant. In: Lernen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 221 – 231.Google Scholar
  77. 77.
    Wright GW. Proceedings of the second symposium on occupational exposure to fibrous glass, Washington D.C.; US Government Printing Office, 1976: 126.Google Scholar
  78. 78.
    Bayliss D, Dement J, Wagoner JK, Blejer HP. Mortality patterns among fibrous glass production workers. Ann NY Acad Sci 1976; 271: 324 – 335.PubMedGoogle Scholar
  79. 79.
    Gross P, Tuma J, de Treville TP. Lungs of workers exposed to fiber glass: A study of their pathologic changes and their dust content. Arch Environ Health 1971; 3: 67 – 76.Google Scholar
  80. 80.
    McDonald AD, McDonald JC. Malignant mesothelioma in North America. Cancer 1980; 46: 1650 – 1656.PubMedGoogle Scholar
  81. 81.
    Pooley FD. Evaluation of fiber samples taken from the vicinity of two villages in Turkey. In: Lernen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 41 – 44.Google Scholar
  82. 82.
    Suzuki Y. Carcinogenic and fibrogenic effects of zeolites: preliminary observations. Environ Res 1982; 27: 433 – 445.PubMedGoogle Scholar
  83. 83.
    Baris YI, Artvinli M, Sahin AA. Environmental mesothelioma in Turkey. Ann NY Acad Sci 1979; 330: 423 – 432.PubMedGoogle Scholar
  84. 84.
    Sebastien P, Gaudichet A, Bignon J, Bark YI. Zeolite bodies in human lungs from Turkey. Lab Invest 1981’; 44: 420 - 425.Google Scholar
  85. 85.
    Warheit DB, Hill LH, Brody AR. In vitro effects of crocidolite asbestos and wollastonite on pulmonary macrophages and serum complement. In: Johari O, ed. Scanning electron microscopy, Vol. II. Chicago: SEM, 1984: 919 – 926.Google Scholar
  86. 86.
    Shasby DM, Peterson M, Hodous T, Boehlecke B, Merchant J. Respiratory morbidity of workers exposed to wollastonite through mining and milling. In: Lernen R, Dement JM, eds. Dusts and disease: occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 251 – 256.Google Scholar
  87. 87.
    Huuskonen MS, Tossavainen A, Koskinen H, et al. Wollastonite exposure and lung fibrosis. Environ Res 1983; 30: 291 – 304.PubMedGoogle Scholar
  88. 88.
    McCrone WC, ed. The particle atlas, Vols. V and VI. 2d ed. Ann Arbor: Ann Arbor Science, 1980: 1336, 1634.Google Scholar
  89. 89.
    Dodson RF, O’Sullivan MF, Corn CJ, Williams MJ, Hurst GA. Ferruginous body formation on a nonasbestos mineral. Arch Pathol Lab Med 1985; 109: 849 – 852.PubMedGoogle Scholar
  90. 90.
    Jephcott CM. Chemical aspects of Shaver’s disease. In: Vorwald AJ, ed. Pneumoconiosis: beryllium, bauxite fumes, compensation. New York: Hoeber, 1950: 489 – 497.Google Scholar
  91. 91.
    Mark GJ, Monroe CB, Kazemi H. Mixed pneumoconiosis: silicosis, asbestosis, talcosis, and berylliosis. Chest 1979; 75: 726 – 728.PubMedGoogle Scholar
  92. 92.
    Mason GR, Abraham JL, Hoffman L, Cole S, Lippman M, Wasserman K. Treatment of mixed-dust pneumoconiosis with whole lung lavage. Am Rev Respir Dis 1982; 126: 1102 – 1107.PubMedGoogle Scholar
  93. 93.
    Sherwin RP, Barman ML, Abraham JL. Silicate pneumoconiosis of farm workers. Lab Invest 1979; 40: 576 – 582.PubMedGoogle Scholar
  94. 94.
    Brody AR, Vallyathan NV, Craighead JE. Distribution and elemental analysis of inorganic particulates in pulmonary tissue. In: Johari O, ed. Scanning electron microscopy, Vol. III. Chicago: IIT Research Institute, 1976: 477 – 484.Google Scholar
  95. 95.
    Abraham JL, Burnett BR. Quantitative analysis of inor ganic particulate burden in situ in tissue sections. In: Johari O, ed. Scanning electron microscopy, Vol. II. Chicago: SEM, 1983: 681 – 696.Google Scholar
  96. 96.
    Pickett JP, Ingram P, Shelburne JD. Identification of inorganic particulates in a single histologic section using both light microscopy and X-ray microprobe analysis. J Histotechnol 1980; 3: 155 – 158.Google Scholar
  97. 97.
    Gylseth B, Ophus EM, Mowe G. Determination of inorganic fiber density in human lung tissue by scanning electron microscopy after low temperature ashing. Scand J Work Environ Health 1979; 5: 151 – 157.PubMedGoogle Scholar
  98. 98.
    Roggli VL, Shelburne JD. New concepts in the diagnosis of mineral pneumoconioses. Semin Respir Med 1982; 4: 138 – 148.Google Scholar
  99. 99.
    Marshall Al Electron probe X-ray microanalysis. In: Hayat MA, ed. Principles and techniques of scanning electron microscopy, Vol. 4. New York: Van NostrandReinhold, 1975: 103 – 173.Google Scholar
  100. 100.
    Berry JP, Henoc P, Galle P, Pariente R. Pulmonary mineral dust: a study of ninety patients by electron microscopy, electron microanalysis and electron microdiffraction. Am J Pathol 1976; 83: 427 – 456.PubMedGoogle Scholar
  101. 101.
    Shelburne JD, Wisseman CL, Broda KR, Roggli VL, Ingram P. Lung-nonneoplastic conditions. In: Trump BF, Jones RJ, eds. Diagnostic electron microscopy, Vol. 4. New York: Wiley, 1983: 475 – 538.Google Scholar
  102. 102.
    Johnson GG, White EW, Strickler D, Hoover R. Image analysis techniques. In: Asher IM, McGrath PP, eds. Symposium on Electron Microscopy of Microfibers: Proceedings of the First FDA Office of Science Summer Symposium. Washington DC: U.S. Government Printing Office, 1976: 76 – 82.Google Scholar
  103. 103.
    Roggli VL, Ingram P, Linton RW, Gutknecht WF, Mastin P, Shelburne JD. New techniques for imaging and analyzing lung tissue. Environ Health Perspect 1984; 56: 163 – 183.PubMedGoogle Scholar
  104. 104.
    A.S.T.M. Index: Index to the powder diffraction file. Philadelphia: American Society for Testing Materials.Google Scholar
  105. 105.
    Barrow RE. X-ray diffraction analysis of quartz in lung tissue. Tex Rep Biol Med 1974; 32: 441 – 448.PubMedGoogle Scholar
  106. 106.
    Lange BA, Haartz JC. Determination of microgram quantities of asbestos by X-ray diffraction: chrysotile in thin dust layers of matrix material. Anal Chem 1979; 51: 520 – 525.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Victor L. Roggli
  • John D. Shelburne

There are no affiliations available

Personalised recommendations