Advertisement

Metal Matrix Composites

  • Krishan Kumar Chawla
Part of the Materials Research and Engineering book series (MATERIALS)

Abstract

The boron fiber reinforced 6061 aluminum matrix composite system was developed in the 1960s. Unidirectionally solidified eutectics with an aligned two-phase micro-structure were produced about the same time. Carbon fiber reinforced metallic composites were successfully made in the 1970s. With the availability of a wide variety of SiC and Al2O3 reinforcements, the research activity in the area of metal matrix composites increased tremendously the world over. Among the important MMC systems, we can include the following:
  1. 1.

    Boron/aluminum

     
  2. 2.

    Carbon/aluminum

     
  3. 3.

    Al2O3/Al and Al2O3/Mg

     
  4. 4.

    SiC/Al

     
  5. 5.

    Eutectic or in situ composites (really a subclass of MMCs)

     

Keywords

Carbon Fiber Fiber Surface Metal Matrix Composite Aluminum Matrix Boron Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Cornie, Y-M. Chiang, D.R. Uhlmann, A.S. Mortensen, and J.M. Collins, Ceram. Bull., 65, 293 (1986).Google Scholar
  2. 2.
    R. Naslain, J. Thebault, and R. Pailler, in Proceedings of the 1975 International Conference on Composite Materials, vol.1, TMS-AIME, New York, 1976, p. 116.Google Scholar
  3. 3.
    M.F. Amateau, “Progress in the Development of Graphite Aluminum Composites by Liquid Infiltration Technology,” Aerospace Corp. Rep. No. ATR-76 (8162)-3, 1976.Google Scholar
  4. 4.
    W. Meyerer, D. Kizer, S. Paprocki, and H. Paul, in Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, 1978, p. 141.Google Scholar
  5. 5.
    K.G. Kreider and K.M. Prewo, in Metal Matrix Composites (vol. 4 in the series Composite Materials), Academic Press, New York, 1974, p. 400.Google Scholar
  6. 6.
    P.R. Smith and F.H. Froes, J. Met., 36, 19 (Mar. 1984).Google Scholar
  7. 7.
    P.R. Siemers, M.R. Jackson, R.L. Mehan, and J.R. Rairden, “Production of Composite Structures by Low Pressure Plasma Deposition”, G.E. Report No. 85CRD001, Jan. 1985.Google Scholar
  8. 8.
    K.K. Chawla and C.E. Collares, in Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, 1978, p. 1237.Google Scholar
  9. 9.
    P.M.B. Slate, in Proceedings of the 1975 International Conference on Composite Materials, vol. 1, TMS-AIME, Warrendale, PA, 1985, p. 743.Google Scholar
  10. 10.
    T. Donomoto, N. Miura, K. Funatani, and N. Miyake, “Ceramic Fiber Reinforced Piston for High Performance Diesel Engine,” SAE Tech. Paper No. 83052, Detroit, MI, 1983.CrossRefGoogle Scholar
  11. 11.
    M.W. Toaz and M.D. Smalc, Diesel Prog. N. Am., (June 1985).Google Scholar
  12. 12.
    J.L. Walter, in In Situ Composites IV, Elsevier, New York, 1982, p. 85.Google Scholar
  13. 13.
    R.G. Hill, R.P. Nelson, and C.L. Hellerich, in Proceedings of the 16th Refractory Working Group Meeting, Seattle, WA, Oct. 1969.Google Scholar
  14. 14.
    K.K. Chawla and M. Metzger, in Advances in Research on Strength and Fracture of Materials, vol. 3, Pergamon Press, New York, 1978, p. 1039.Google Scholar
  15. 15.
    C. Manning and T. Gurganus, J. Am. Ceram. Soc., 52, 115 (1969).CrossRefGoogle Scholar
  16. 16.
    S. Rhee, J. Am. Ceram. Soc, 53, 386 (1970).CrossRefGoogle Scholar
  17. 17.
    A.A. Baker and C. Shipman, Fiber Sci. Tech., 5, 285 (1972).CrossRefGoogle Scholar
  18. 18.
    H.A. Katzman, J. Mater. Sci., 22, 144 (1987).CrossRefGoogle Scholar
  19. 19.
    C.G. Levi, G.J. Abbaschian, and R. Mehrabian, Met. Trans.A, 9A, 697 (1978).CrossRefGoogle Scholar
  20. 20.
    G.R. Cappelman, J.F. Watts, T.W. Clyne, J. Mater. Sci., 20, 2159 (1985).CrossRefGoogle Scholar
  21. 21.
    A.R. Champion, W.H. Krueger, H.S. Hartman, and A.K. Dhingra, in Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, 1978, p. 883.Google Scholar
  22. 22.
    A.K. Dhingra, Proc. R. Soc. London, A294, 559 (1980).Google Scholar
  23. 23.
    K.M. Prewo, United Technologies Research Center, Rep. R77–912245-3, May 1977, as cited in Ref. 20.Google Scholar
  24. 24.
    I.W. Hall and V. Barrailler, Met. Trans. A, 17A, 1075 (1986).CrossRefGoogle Scholar
  25. 25.
    R.T. Pepper, J. W. Upp, R.C. Rossi, and E.G. Kendall, Met. Trans., 2, 117 (1971).CrossRefGoogle Scholar
  26. 26.
    Y. Kimura, Y. Mishima, S. Umekawa, and T. Suzuki, J. Mater. Sci., 19, 3107 (1984).CrossRefGoogle Scholar
  27. 27.
    R. Warren and C-H. Andersson, Composites, 15, 101 (1984).CrossRefGoogle Scholar
  28. 28.
    S. Kohara, in Proceedings of the Japan-United States Conference on Composite Materials, Japan Society for Composite Materials, Tokyo, 1981.Google Scholar
  29. 29.
    H.E. Cline, J. L. Walter, E.F. Koch, and L.M. Osika, Acta Met., 19, 405 (1971).CrossRefGoogle Scholar
  30. 30.
    J. van Suchtelen, Philips Res. Rep., 27, 28 (1972).Google Scholar
  31. 31.
    L.-J. Fu, M. Schmerling, and H.L. Marcus, in Composite Materials: Fatigue and Fracture, ASTM STP 907, American Society for Testing and Materials, Philadelphia, 1986, p.51.CrossRefGoogle Scholar
  32. 32.
    J.A. DiCarlo, J. Met. 37, 44 (June 1985).Google Scholar
  33. 33.
    K.K. Chawla and A.C. Bastos, in Proceedings of the 1975 International Conference on Composite Materials, vol. 1, TMS-AIME, New York, 1976, p. 549.Google Scholar
  34. 34.
    K.K. Chawla and M. Metzger, J. Mater. Sci., 7, 34 (1972).CrossRefGoogle Scholar
  35. 35.
    K.K. Chawla, Philos Mag., 28, 401 (1973).CrossRefGoogle Scholar
  36. 36.
    K.K. Chawla, Metallography, 6, 55 (1973).CrossRefGoogle Scholar
  37. 37.
    K.K. Chawla, in Grain Boundaries in Engineering Materials, Proceedings of the 4th Bolton Landing Conference, Claitor’s Publishing, Baton Rouge, LA, 1974, p. 435.Google Scholar
  38. 38.
    K.K. Chawla, A.C. Bastos, and F.A. Cunha Silva, Trans. Japan Soc. Composite Mater. 3, 14 (1977).Google Scholar
  39. 39.
    R.J. Arsenault and R.M. Fisher, Scripta Met., 17, 67 (1983).CrossRefGoogle Scholar
  40. 40.
    M. Vogelsang, R.J. Arsenault, and R.M. Fisher, Met. Trans. A, 17A, 379 (1986).Google Scholar
  41. 41.
    K.K. Chawla, in Microstructural Science, vol. 2, Elsevier, New York, 1974, p. 115.Google Scholar
  42. 42.
    W.G. Patterson and M. Taya, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, 1986, p. 53.Google Scholar
  43. 43.
    T.G. Nieh and R.F. Karlak, Scripta Met., 18, 25 (1984).CrossRefGoogle Scholar
  44. 44.
    O.B. Pedersen, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA., 1986, p. 1.Google Scholar
  45. 45.
    K.K. Chawla, J. of Metals, 37, 25 (Dec. 1985).Google Scholar
  46. 46.
    A. Mortensen, M.N. Gugnor, J.A. Cornie, and M.C. Flemings, J. Met., 38, 30 (Mar. 1986).Google Scholar
  47. 47.
    A. Kohyama, N. Igata, Y. Imai, H. Teranishi, and T. Ishikawa, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, 1985, p. 609.Google Scholar
  48. 48.
    W.L. Phillips, in Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, 1978, p. 567.Google Scholar
  49. 49.
    E.G. Kendall, in Metallic Matrix Composites (vol. 4 in the series Composite Materials), Academic Press, New York, 1974, p. 319.Google Scholar
  50. 50.
    A. Kelly and K.N. Street, Proc. R. Soc. London, 328A, 283 (1972).Google Scholar
  51. 51.
    H. Lilholt, in Fatigue and Creep of Composite Materials, Third Rise International Symposium, Riso, Denmark, 1982.Google Scholar
  52. 52.
    M. McLean, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, 1986, p.37.Google Scholar
  53. 53.
    D.R. Williams and M.E. Fine, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA., 1985, p. 639.Google Scholar
  54. 54.
    K.K. Chawla, Fiber Sci. Tech., 7, 49 (1975).CrossRefGoogle Scholar
  55. 55.
    G. Rosenkranz, V. Gerold, D. Stockel, and L. Tillmann, J. Mater. Sci., 17, 264 (1982).CrossRefGoogle Scholar
  56. 56.
    G. Rosenkranz, V. Gerold, K. Kromp, D. Stockel, and L. Tillmann, J. Mater. Sci., 17, 277 (1982).CrossRefGoogle Scholar
  57. 57.
    W.A. Logsdon and P.K. Liaw, Eng. Fract. Mech., 24, 737 (1986).CrossRefGoogle Scholar
  58. 58.
    CR. Crowe, R.A. Gray, and D.F. Hasson, in Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, 1986, p. 843.Google Scholar
  59. 59.
    Aviation Week and Space Technology, 123, 127 (Nov. 18, 1985).Google Scholar
  60. 60.
    D.L. McDanels, Met. Trans.A, 16A, 1105 (1985).CrossRefGoogle Scholar
  61. 61.
    W.C. Harrigan, DWA Composite Specialties, personal communication.Google Scholar
  62. 62.
    D. Stöckel, in Proceedings of the 1975 International Conference on Composite Materials, vol. 2, TMS-AIME, New York, 1976, p. 484.Google Scholar
  63. 63.
    D.L. McDanels. T.T. Serafini, and J.A. DiCarlo, NASA Tech. Memorandum 87132, National Aeronautics & Space Administration Washington, DC, 1985.Google Scholar
  64. 64.
    D.W. Petrasek and R.A. Signorelli, “Tungsten Fiber Reinforced Superalloys — A Status Review,” NSAS Tech. Memorandum 82590, National Aeronautics & Space Administration, Washington, DC, 1981.Google Scholar
  65. 65.
    F.D. Lemkey, in Industrial Materials Science & Engineering, Marcel Dekker, New York, 1984, p. 441.Google Scholar
  66. 66.
    H. Weiss, Met. Trans., 2,1513 (1971).Google Scholar
  67. 67.
    P. Bracke, H. Schurmans, and J. Verhoest, Inorganic Fibres and Composite Materials, Pergamon Press, Oxford, 1983, p.89.Google Scholar

Suggested Reading

  1. A. Banerji, P.K. Rohatgi, and W. Reif, Metalwiss. Tech., 38, 656 (1984).Google Scholar
  2. T.W. Chou, A. Kelly, and A. Okura, Composites, 16, 187 (July 1985).CrossRefGoogle Scholar
  3. K.G. Kreider (ed.), Metal Matrix Composites (vol. 4 in the series Composite Materials), Academic Press, New York, 1974.Google Scholar
  4. C.T. Lynch and J.P. Kershaw, Metal Matrix Composites, CRC Press, Cleveland, OH, 1972.Google Scholar
  5. M. McLean, Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983.Google Scholar
  6. S.T. Mileiko, in Fabrication of Composites, North-Holland, Amsterdam, 1983, p. 221.Google Scholar
  7. Proceedings of the Conference on In Situ Composites, National Materials Advisory Board, NMAB-308, Washington, DC, 1973.Google Scholar
  8. Proceedings of the Second Conference on In Situ Composites, Xerox Individualized Publishing, Lexington, MA, 1976.Google Scholar
  9. Proceedings of the Third Conference on In Situ Composites, Ginn Custom Publishing, Lexington, MA, 1979.Google Scholar
  10. Proceedings of the Fourth Conference on In Situ Composites, Elsevier, New York, 1982.Google Scholar
  11. P.K. Rohatgi, R. Asthana, and S. Das, Solidification, Structures, and Properties of Cast Metal-ceramic Particle Composites, Intl. Met. Rev., 31, 115 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Krishan Kumar Chawla
    • 1
  1. 1.Dept. of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations