Advertisement

Fibers

  • Krishan Kumar Chawla
Part of the Materials Research and Engineering book series (MATERIALS)

Abstract

Reinforcements need not necessarily be in the form of long fibers. One can have them in the form of particles, flakes, whiskers, discontinuous fibers, continuous fibers, and sheets. It turns out that the great majority of materials is stronger and stiffer in the fibrous form than in any other form: thus the great attraction of fibrous reinforcements. Specifically, in this category, we are most interested in the so-called advanced fibers which possess very high strength and very high stiffness coupled with a very low density. The reader should realize that many naturally occurring fibers can be and are used in situations involving not very high stresses [1,2]. The great advantage in this case, of course, is that of low cost. The vegetable kingdom is, in fact, the largest source of fibrous materials. Cellulosic fibers in the form of cotton, flax, jute, hemp, sisal, and ramie, for example, have been used in the textile industry, while wood and straw have been used in the paper industry. Other natural fibers, such as hair, wool, and silk, consist of different forms of protein. Any discussions of such fibers are beyond the scope of this book. The interested reader, however, is directed to a good review article by Meredith [3].

Keywords

Metallic Glass Fiber Axis Rice Hull Chemical Vapor Deposition Process Ceramic Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.K. Chawla, in Proceedings of the International Conference on the Mechanical Behavior of Materials II, ASM, Metals Park, Ohio, 1976, p. 1920.Google Scholar
  2. 2.
    K.K. Chawla and A.C. Bastos, in Proceedings of the International Conference on the Mechanical Behavior of Materials III, Pergamon Press, Oxford, 1979, p. 191.Google Scholar
  3. 3.
    R. Meredith, Contemp. Phys. 11, 43 (1970).CrossRefGoogle Scholar
  4. 4.
    W.H. Dresner, J. Metals, 21, 17 (Apr. 1969).Google Scholar
  5. 5.
    E. de Lamotte and A.J. Perry, Fibre Sci. Tech., 3, 157 (1970).CrossRefGoogle Scholar
  6. 6.
    K.L. Loewenstein, The Manufacturing Technology of Continuous Glass Fibers, 2nd ed., Elsevier, New York, 1983.Google Scholar
  7. 7.
    B. Parkyn (ed.), Glass Reinforced Plastics, Butterworth, London, 1970.Google Scholar
  8. 8.
    R.E. Lowrie, in Modern Composite Materials, Addison-Wesley, Reading, MA, 1967, p. 270.Google Scholar
  9. 9.
    C.J. Brinker, D.E. Clark, and D R. Ulrich (eds.), Better Ceramics Through Chemistry, North-Holland, New York, 1984.Google Scholar
  10. 10.
    T. Davis, H. Palmour, and T. Porter (eds.), Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1984.Google Scholar
  11. 11.
    S. Sakka, Am. Ceram. Soc. Bull, 64, 1463 (1985).Google Scholar
  12. 12.
    E. Weintraub, J. Ind. Eng. Chem., 3, 299 (1911).CrossRefGoogle Scholar
  13. 13.
    C.P. Talley, J. Appl. Phys., 30, 1114 (1959).CrossRefGoogle Scholar
  14. 14.
    C.P. Talley, L. Line, and O. Overman, in Boron: Synthesis, Structure, and Properties, Plenum Press, New York, 1960, p. 94.Google Scholar
  15. 15.
    A.C. van Maaren, O. Schob, and W. Westerveld, Philips Tech. Rev., 35, 125 (1975).Google Scholar
  16. 16.
    V. Krukonis, in Boron and Refractory Borides, Springer-Verlag, Berlin, 1977, p. 517.CrossRefGoogle Scholar
  17. 17.
    J. Vega-Boggio and O. Vingsbo, in 1978 International Conference on Composite Materials, ICCM/2, TMS-AIME, New York, 1978, p. 909.Google Scholar
  18. 18.
    F. Galasso, D. Knebl, and W. Tice, J. Appl Phys., 38, 414 (1967).CrossRefGoogle Scholar
  19. 19.
    F. Galasso and A. Paton, Trans. Met. Soc. AIME, 236, 1751 (1966).Google Scholar
  20. 20.
    H.E. DeBolt, in Handbook of Composites, Van Nostrand Reinhold, New York, 1982, p. 171.Google Scholar
  21. 21.
    F.W. Wawner, in Modern Composite Materials, Addison-Wesley, Reading, MA, 1967, p. 244.Google Scholar
  22. 22.
    J.A. DiCarlo, J. Met. 37, 44 (June 1985).Google Scholar
  23. 23.
    K.K. Chawla, Mater. Sci. Eng., 48, 137 (1981).CrossRefGoogle Scholar
  24. 24.
    A. Shindo, Rep. Osaka Ind. Res. Inst. No. 317 (1961).Google Scholar
  25. 25.
    A.A. Baker, Metals Forum, 6, 81 (1983).Google Scholar
  26. 26.
    W. Watt, Proc. R. Soc, A319, 5 (1970).Google Scholar
  27. 27.
    R. Bacon, in Chemistry and Physics of Carbon, vol. 9, Marcel Dekker, New York, 1973, p. 1.Google Scholar
  28. 28.
    R.J. Diefendorf and E. Tokarsky, Polym. Eng. Sci., 15, 150 (1975).CrossRefGoogle Scholar
  29. 29.
    H.N. Ezekiel and R.G. Spain, J. Polym. Sci. C, 19, 271 (1967).Google Scholar
  30. 30.
    W. Watt and W. Johnson, Appl. Polym. Symp., 9, 215 (1969).Google Scholar
  31. 31.
    D.J. Johnson and C.N. Tyson, Br. J. Appl. Phys., 2, 787 (1969).Google Scholar
  32. 32.
    R. Perret and W. Ruland, J. Appl. Crystallogr., 3 (1970) 525.CrossRefGoogle Scholar
  33. 33.
    S.C. Bennett and D.J. Johnson, in 5th International Carbon and Graphite Conference, Society of the Chemical Industry, London, 1978, p. 377.Google Scholar
  34. 34.
    S.C. Bennett and D.J. Johnson, Carbon, 17, 25 (1979).CrossRefGoogle Scholar
  35. 35.
    O.T. Inal, N. Leca, and L. Keller, Phys. Status Solidi, 62, 681 (1980).CrossRefGoogle Scholar
  36. 36.
    S.C. Bennet, D.J. Johnson, and W. Johnson, J. Mater. Sc., 18, 3337 (1983), Chapmann & Hall.CrossRefGoogle Scholar
  37. 37.
    A. Fourdeux, R. Perret, and W. Ruland, in Carbon Fibres: Their Composites and Applications, The Plastics Institute, London, 1971, p. 57.Google Scholar
  38. 38.
    L.S. Singer, in Ultra-High Modulus Polymers, Applied Science Publishers, Essex, England, 1979, p. 251.Google Scholar
  39. 39.
    J.P. Riggs, in Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, 1985, p. 640.Google Scholar
  40. 40.
    J.S. Murday, D.D. Dominguez, J.A. Moran, W.D. Lee, and R. Eaton, Synth. Met. 9, 397 (1984).CrossRefGoogle Scholar
  41. 41.
    P.J. Barham and A. Keller, J. Mater. Sci., 20, 2281 (1985).CrossRefGoogle Scholar
  42. 42.
    G. Capaccio, A.G. Gibson, and I.M. Ward, in Ultra-High Modulus Polymers, Applied Science Publishers, London, 1979, p. 1.Google Scholar
  43. 43.
    B. Kalb and A.J. Pennings, J. Mater. Sci., 15, 2584 (1980).CrossRefGoogle Scholar
  44. 44.
    J. Smook and A.J. Pennings, J. Mater. Sci., 19, 31 (1984).CrossRefGoogle Scholar
  45. 45.
    K.A. Hodd and D.C. Turley, Chem. Br. 14, 545 (1978).Google Scholar
  46. 46.
    P.W. Morgan, Plast. Rubber: Mater. Appl., 4, 1 (Feb. 1979).Google Scholar
  47. 47.
    E.E. Magat, Philos. Trans. R. Soc. London, A296, 463 (1980).CrossRefGoogle Scholar
  48. 48.
    S.L. Kwolek, P.W. Morgan, J.R. Schaefgen, and L.W. Gulrich, Macromolecules, 10, 1390 (1977).CrossRefGoogle Scholar
  49. 49.
    D. Tanner, A.K. Dhingra, and J.J. Pigliacampi, J. Met., 38, 21 (Mar. 1986).Google Scholar
  50. 50.
    C.C. Chiao and T.T. Chiao, in Handbook of Composites, Van Nostrand Reinhold, New York, 1982, p. 272.CrossRefGoogle Scholar
  51. 51.
    M. Jaffe and R.S. Jones, in Handbook of Fiber Science & Technology, vol. III, High Technology Fibers, Part A, Marcel Dekker, New York, 1985, p. 349.Google Scholar
  52. 52.
    M.G. Dobb, D.J. Johnson, and B.P. Saville, Philos. Trans. R. Soc. London, A294, 483 (1980).CrossRefGoogle Scholar
  53. 53.
    A.R. West. ZJ. Mater. Sci., 16, 2025 (1981).CrossRefGoogle Scholar
  54. 54.
    S.J. DeTeresa, S.R. Allen, R.J. Farris, and R.S. Porter, J. Mater. Sci., 19, 57 (1984).CrossRefGoogle Scholar
  55. 55.
    A.K. Dhingra, Philos. Trans. R. Soc. London, A294, 411 (1980).CrossRefGoogle Scholar
  56. 56.
    K.S. Mazdiyasni, Ceram. International, 8, 42 (1982).CrossRefGoogle Scholar
  57. 57.
    H.E. DeBolt, V.J. Krukonis, and F.E. Wawner, in Silicon Carbide — 1973, University of South Carolina Press, Columbia, SC, 1974, p. 168.Google Scholar
  58. 58.
    S. Yajima, K. Okamura, J. Hayashi, and M. Omori, J. Am. Ceram. Soc, 59, 324 (1976)CrossRefGoogle Scholar
  59. 59.
    S. Yajima, Philos. Trans. R. Soc. London, A294, 419 (1980).CrossRefGoogle Scholar
  60. 60.
    K.J. Wynne and R.W. Rice, Ann. Rev. Mater. Sci., 15, 297 (1984).CrossRefGoogle Scholar
  61. 61.
    C.-H. Andersson and R. Warren, Composites, 15, 16 (Jan. 1984).CrossRefGoogle Scholar
  62. 62.
    R. Warren and C.-H. Andersson, Composites, 15, 101 (Apr. 1984).CrossRefGoogle Scholar
  63. 63.
    S.G. Wax, Am. Ceram. Soc. Bull., 64, 1096 (1985).Google Scholar
  64. 64.
    K. Okamura, personal communication, 1986.Google Scholar
  65. 65.
    G. Simon and A.R. Bunsell, J. Mater. Sci., 19, 3649 (1984).CrossRefGoogle Scholar
  66. 66.
    J.V. Milewski, J.L. Sandstrom, and W.S. Brown, in Silicon Carbide — 1973, University of South Carolina Press, Columbia, S C, 1974, p. 634.Google Scholar
  67. 67.
    J.-G. Lee and I. B. Cutler, Am. Ceram. Soc. Bull., 54, 195 (1975).Google Scholar
  68. 68.
    J.V. Milewski, F.D. Gac, J.J. Petrovic, S.R. Skaggs, J. Mater. Sci., 20, 1160 (1985).CrossRefGoogle Scholar
  69. 69.
    J.J. Petrovic. J.V. Milewski. D.L. Rohr, and F.D. Gac, J. Mater. Sci., 20, 1167 (1985).CrossRefGoogle Scholar
  70. 70.
    R.R. Wills, R.A. Mankle, and S.P. Mukherjee, Am. Ceram. Soc. Bull., 62, 904 (1983).Google Scholar
  71. 71.
    J. Economy and R. Lin, in Boron and Refractory Borides, Springer-Verlag, New York, 1977, p. 552.CrossRefGoogle Scholar
  72. 72.
    A. Lindemanis, in Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1983.Google Scholar
  73. 73.
    W.D. Smith, in Boron and Refractory Borides, Springer-Verlag, Berlin, 1977, p. 541.CrossRefGoogle Scholar
  74. 74.
    R.A. Signorelli, in Advances in Composite Materials, Japan Society of Composite Materials, Tokyo, 1982, p. 37.Google Scholar
  75. 75.
    A. Kelly and H. Lilholt, Philos. Mag., 20, 311 (1969).CrossRefGoogle Scholar
  76. 76.
    K.K. Chawla and M. Metzger, J. Mater. Sci., 7, 34 (1972).CrossRefGoogle Scholar
  77. 77.
    K.K. Chawla, Philos. Mag., 28, 55 (1973).CrossRefGoogle Scholar
  78. 78.
    K.K. Chawla and M. Metzger, Met. Trans. A., 8A, 1681 (1977).CrossRefGoogle Scholar
  79. 79.
    D. Stöckel, in Proceedings of the 1975 International Conference on Composite Materials, TMS-AIME, New York, vol. 2, 1976, p. 484.Google Scholar
  80. 80.
    T.R. Anantharaman (ed.), Metallic Glasses, Trans. Tech. Pub., Aedermannsdorf, Switzerland, 1984, p. 1.Google Scholar
  81. 81.
    H.J. Guntherodt and H. Beck (eds.), Metallic Glasses, Springer-Verlag, Berlin, 1981.Google Scholar
  82. 82.
    C. Hargitai, I. Bakonyi, and T. Kemeny (eds.), Metallic Glasses: Science & Technology, Central Research Institute of Physics, Budapest, Hungary, 1981.Google Scholar
  83. 83.
    R. Hasegawa (ed.), The Magnetic, Chemical, and Structural Properties of Glassy Metallic Alloys, CRC Press, Boca Raton, FL, 1981.Google Scholar

Suggested Reading

  1. P. Bracke, H. Schurmans, and J. Verhoest, Inorganic Fibers and Composite Materials, Pergamon Press, Oxford, 1983.Google Scholar
  2. C.C. Chiao and T.T. Chiao, in Handbook of Composities, G. Lubin (ed.), Van Nostrand Reinhold. New York, 1982, p. 272.CrossRefGoogle Scholar
  3. T. Davis, H. Palmour, and T. Porter (eds.), Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1982.Google Scholar
  4. J. Delmonte, Technology of Carbon and Graphite Fiber Composites, Van Nostrand Reinhold, New York, 1981.Google Scholar
  5. R.J. Diefendorf and E. Tokarsky, Polym. Eng. Sci., 15, 150 (1975).CrossRefGoogle Scholar
  6. J.B. Donnet and R.C. Bansal, Carbon Fibers, Marcel Dekker, New York, 1984.Google Scholar
  7. E. Fitzer, Carbon Fibres and Their Composites, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  8. M. Jaffe and R.S. Jones, High Performance Aramid Fibers, in Handbook of Fiber Science and Technology, vol. III, High Technology Fibers. Google Scholar
  9. M. Langley (ed.), Carbon Fibres in Engineering, McGraw-Hill, London, 1973.Google Scholar
  10. J. Preston, Aramid Fibers in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 4, Wiley-Interscience, New York, 1978.Google Scholar
  11. W. Watt and B. V. Perov (eds.), Strong Fibres, vol 1. in the series Handbook of Composites, North-Holland, Amsterdam, 1985.Google Scholar
  12. K.J. Wynne and R.W. Rice, Ceramics via Polymer Pyrolysis, Ann. Rev. Mater. Sci., 14, 297 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Krishan Kumar Chawla
    • 1
  1. 1.Dept. of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations