Insulin Resistance in the Polycystic Ovary Syndrome

  • Andrea Dunaif
  • Carol Beth Book
Part of the Contemporary Biomedicine book series (CB, volume 15)


Polycystic ovary syndrome (PCOS) is an exceptionally common disorder of premenopausal women characterized by hyperandrogenism and chronic anovulation (1). Although there have been no specific population-based studies, a 5–10% prevalence of this disorder in women of reproductive age is probably a reasonable conservative estimate. This is based as an upper limit on studies of the prevalence of polycystic ovaries, which found that ∼20% of self-selected normal women had polycystic ovary morphology on ovarian ultrasound (2). Many of these women had subtle endocrine abnormalities (2). The lower estimate is based on the reported 3% prevalence rate of secondary amenorrhea for three or more months (3) and the fact that up to ∼75% of women with secondary amenorrhea will fulfill diagnostic criteria for PCOS (4). PCOS women can also have less profound disturbances in menstrual function (1,2).


Insulin Resistance Insulin Receptor Insulin Action Polycystic Ovary Polycystic Ovary Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunaif A, Givens JR, Haseltine F, Merriam GR, eds. The Polycystic Ovary Syndrome. Cambridge, MA: Blackwell Scientific, 1992.Google Scholar
  2. 2.
    Poison DW, Wadsworth J, Adams J, Franks S. Polycystic ovaries—a common finding in normal women. Lancet 1988; 1: 870–872.Google Scholar
  3. 3.
    Pettersson F, Fries H, Nillius SJ. Epidemiology of secondary amenorrhea. Am J Obstet Gynecol 1973; 117: 80–86.PubMedGoogle Scholar
  4. 4.
    Hull MGR. Epidemiology of infertility and polycystic ovarian disease: endocrinological and demographic studies. Gynecol Endocrinol 1987; 1: 235–245.Google Scholar
  5. 5.
    Lobo RA, Goebelsmann U, Horton R. Evidence for the importance of peripheral tissue events in the development of hirsutism in polycystic ovary syndrome. J Clin Endocrinol Metab 1983; 57: 393–397.PubMedCrossRefGoogle Scholar
  6. 6.
    Franks S. Polycystic ovary syndrome. New Engl J Med 1995; 333: 853–861.PubMedCrossRefGoogle Scholar
  7. 7.
    Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A. Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance and/or hyperinsulinemia. J Clin Endocrinol Metab 1987; 65: 499–507.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunaif A, Green G, Lebwohl M, Phelps R, Futterweit W, Lewy L. Acanthosis nigricans, insulin action, and hyperandrogenism: clinical, histological, and biochemical findings. J Clin Endocrinol Metab 1991; 73: 590–595.PubMedCrossRefGoogle Scholar
  9. 9.
    Mechanick J, Dunaif A. Masculinizatin: A clinical approach to the diagnosis and treatment of hyperandrogenic women. In: Advances in Endocrinology and Metabolism, vol. 1. Mazzaferri E, ed. Chicago: Mosley—Year Book, pp. 129–173, 1990.Google Scholar
  10. 10.
    Achard C, Thiers J. Le virilisme pilaire et son association a l’insuffisance glycolytique (diabete des femmes a barb). Bull Acad Natl Med 1921; 86: 51–64.Google Scholar
  11. 11.
    Dunaif A. Insulin resistance and ovarian hyperandrogenism. Endocrinologist 1992; 2: 248–260.CrossRefGoogle Scholar
  12. 12.
    Kierland RR, Lakatos I, Szijarto L. Acanthosis nigricans: an analysis of data in twenty-two cases and a study of its frequency in necropsy material. J Invest Dermatol 1947; 9: 299–305.PubMedGoogle Scholar
  13. 13.
    Brown J, Winkelmann RK. Acanthosis nigricans: a study of 90 cases. Medicine 1968; 47: 33–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Barnes ND, Palumbo PJ, Hayles AM, Folgar H. Insulin resistance, skin changes and virilization: a recessively inherited syndrome possibly due to pineal gland dysfunction. Diabetologia 1974; 10: 284–289.Google Scholar
  15. 15.
    Colle M, Doyard P, Chaussain J-L, Battin J, Job J-C. Acanthosis nigricans, hirsutisme et diabete insulin-resistant. Arch Franc Pediat 1979; 36: 518–523.PubMedGoogle Scholar
  16. 16.
    Kahn CR, Flier JS, Bar RS, Archer JA, Gordon P, Martin MM, Roth J. The syndromes of insulin resistance and acanthosis nigricans. New Engl J Med 1976; 294: 739–745.PubMedCrossRefGoogle Scholar
  17. 17.
    Burghen GA, Givens JR, Kitabchi AE. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J Clin Endocrinol Metab 1980; 50: 113–116.PubMedCrossRefGoogle Scholar
  18. 18.
    Flier JS, Eastman RC, Minaker KL, Matteson D, Rowe JW. Acanthosis nigricans in obese women with hyperandrogenism. Diabetes 1985; 34: 101–107.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunaif A, Hoffman AR, Scully RE, Flier JS, Longcope C, Levy LJ, Crowley WF, Jr. The clinical, biochemical and ovarian morphologic features in women with acanthosis nigricans and masculinization. Obstet Gynecol 1985; 66: 545–552.Google Scholar
  20. 20.
    Dahlgren E, Johansson S, Lindstedt G, Knutsson F, Oden A, Janson PO, Mattson L-A, Crona N, Lundberg P-A. Women with polycystic ovary syndrome wedge resected in 1956 to 1965: a long-term follow-up focusing on natural history and circulating hormones. Fertil Steril 1992; 57: 505–513.PubMedGoogle Scholar
  21. 21.
    Quintana B, Chinchilli V, Sieber J, Fultz P, George N, Dunaif A. High risk of glucose intolerance (GI) in women with oligomenorrhea (oligo) or with polycystic ovary syndrome (PCOS). 77th Annual Meeting of The Endocrine Society, June. Washington, DC, Abstract # OR3–5, p. 50, 1995.Google Scholar
  22. 22.
    Harris MI, Hadden WC, Knowler WC, Bennett PH. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74 yr. Diabetes 1987; 36: 523–534.PubMedCrossRefGoogle Scholar
  23. 23.
    Dunaif A, Futterweit W, Segal KR, Lobrjansky A. Profound peripheral insulin resistance, independent of obesity, in the polycystic ovary syndrome. Diabetes 1989; 38: 1165–1174.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in the polycystic ovary syndrome. Diabetes 1992; 41: 1257–1266.PubMedCrossRefGoogle Scholar
  25. 25.
    Dunaif A, Sorbara L, Delson R, Green G. Ethnicity and polycystic ovary syndrome are associated with independent and additive decreases in insulin action in Caribbean Hispanic women. Diabetes 1993; 42: 1462–1468.PubMedCrossRefGoogle Scholar
  26. 26.
    Finegood DT, Dunaif A. Insulin resistance and 13-cell dysfunction in obese women with poly-cystic ovary syndrome. Presented at the 2nd Toronto-Stockholm Symposium on Perspectives in Diabetes Research. Stockholm, September 13–16, 1992.Google Scholar
  27. 27.
    Oveson P, Moller J, Ingerslev HJ, Jorgensen JOL, Mengel A, Schmitz O, George K, Alberti MM, Moller N. Normal basal and insulin-stimulated fuel metabolism in lean women with the poly-cystic ovary syndrome. J Clin Endocrinol Metab 1993; 77: 1636–1640.CrossRefGoogle Scholar
  28. 28.
    Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome. Am J Obstet Gynecol 1992; 167: 1807–1812.Google Scholar
  29. 29.
    Bergman RN. Toward physiological understanding of glucose tolerance. Minimal model approach. Diabetes 1989; 38: 1512–1527.PubMedCrossRefGoogle Scholar
  30. 30.
    Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP, Porte D Jr. Quantification of the relationship between insulin sensitivity and 13-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 1993; 42: 1663–1672.PubMedCrossRefGoogle Scholar
  31. 31.
    Bergman RN, Phillips SP, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man. J Clin Invest 1981; 68: 1456–1467.PubMedCrossRefGoogle Scholar
  32. 32.
    O’Meara NM, Blackman JD, Ehrmann DA, Barnes RB, Jaspan JB, Rosenfield RL, Polonsky KS. Defects in 13-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1993; 76: 1241–1247.PubMedCrossRefGoogle Scholar
  33. 33.
    Ehrmann DA, Stuns J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 96: 520–527.PubMedCrossRefGoogle Scholar
  34. 34.
    Weber RFA, Pache TD, Jacobs ML, Docter R, Loriaux DL, Fauser BCJM, Birkenhager JC. The relation between clinical manifestations of polycystic ovary syndrome and 13-cell function. Clin Endocrinol 1993; 38: 295–300.CrossRefGoogle Scholar
  35. 35.
    Holte J, Bergh T, Berne C, Berglund L, Lithell H. Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab 1994; 78: 1052–1058.PubMedCrossRefGoogle Scholar
  36. 36.
    Ciaraldi TP, El-Roeiy A, Madar Z, Reichart D, Olfesky JM, Yen SSC. Cellular mechanisms on insulin resistance in polycystic ovarian syndrome. J Clin Endocrinol Metab 1992; 75: 577–583.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenbaum D, haber RS, Dunaif A. Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 1993; 264: E197 - E202.PubMedGoogle Scholar
  38. 38.
    Caro JF, Dohm LG, Pories WJ, Sinha MK. Cellular alterations in liver skeletal muscle and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes/Metab Rev 1989; 5: 665–689.CrossRefGoogle Scholar
  39. 39.
    Dunaif A, Xia J, Book C-B, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle: a potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 1995; 96: 801–810.PubMedCrossRefGoogle Scholar
  40. 40.
    Bollage GE, Roth RA, Beaudoin J, Mochly-Rosen D, Koshland DE Jr. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci USA 1986; 83: 5822–5234.CrossRefGoogle Scholar
  41. 41.
    Takayama S, White MF, Kahn CR. Phorbal ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem 1988; 263: 3440–3447.PubMedGoogle Scholar
  42. 42.
    Karasik A, Rothenberg PL, Yamada K, White MF, Kahn CR. Increased protein kinase C activity is linked to reduced insulin receptor autophosphorylation in liver of starved rats. J Biol Chem 1990; 265: 10226–1023.PubMedGoogle Scholar
  43. 43.
    Chin JE, Liu F, Roth RA. Activation of protein kinase Ca inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Mol Endocrinol 1994; 8: 51–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Taylor SI, Cama A, Accili D, Barbetti F, Quon J, Sierra MDLL, Suzuki Y, Koller E, LevyToledano R, Wertheimer E, Moncada VY, Kadowaki H, Kadowaki T. Mutations in the insulin receptor gene. Endocrine Rev 1992; 13: 566–595.Google Scholar
  45. 45.
    Sorbara LR, Tang Z, Cama A, Xia J, Schenker E, Kohanski RA, Portesky L, Koller E, Taylor SI, Dunaif A. Absence of insulin receptor gene mutations in three women with the polycystic ovary syndrome. Metabolism 1994; 43: 1568–1574.PubMedCrossRefGoogle Scholar
  46. 46.
    Lewis RL, Cao L, Perregaux D, Czech MP. Threonine 1336 of the human insulin receptor is a major target for phosphorylation by protein kinase C. Biochem 1990; 29: 1807–1913.CrossRefGoogle Scholar
  47. 47.
    Pillay TS, Whitaker J, Lammers P, Ullrich A, Siddle K. Multisite serine phosphorylation of the insulin and IGF-1 receptors in transfected cells. FEBS 1991; 288: 206–211.CrossRefGoogle Scholar
  48. 48.
    Rapuano M, Rosen OM. Phosphorylatio of the insulin receptor by a casein kinase I-like enzyme. J Biol Chem 1991; 266: 12, 902–12, 907.Google Scholar
  49. 49.
    Roth RA, Beaudoin J. Phosphorylation of purified insulin receptor by cAMP kinase. Diabetes 1987; 36: 123–126.PubMedCrossRefGoogle Scholar
  50. 50.
    Stadtmaurer L, Rosen OM. Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin receptor. J Biol Chem 1986; 261: 3402–3407.Google Scholar
  51. 51.
    Kemp BE, Graves DJ, Benjamin E, Krebs EG. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem 1977; 252: 4888–4893.PubMedGoogle Scholar
  52. 52.
    Guo H, Damuni Z. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Proc Natl Acad Sci USA 1993; 90: 2500–2504.PubMedCrossRefGoogle Scholar
  53. 53.
    Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A, Spencer S, Grupe A, Henzel W, Stewart TA, Reaven GM, Goldfine ID. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature 1995; 373: 448–451.PubMedCrossRefGoogle Scholar
  54. 54.
    Sbraccia P, Goodman PA, Maddux BA, Wong KY, Chen YDI, Reaven GM, Goldfine ID. Production of inhibitor of insulin-receptor tyrosine kinase in fibroblasts from patient with insulin resistance and NIDDM. Diabetes 1991; 40: 295–299.PubMedCrossRefGoogle Scholar
  55. 55.
    Legro R, Fox J, Dunaif A. Insulin resistance is a potential phenotypic marker for familial poly-cystic ovary syndrome (PCOS). 50th Annual Meeting of The American Fertility Society November 1994, San Antonio, TX, Abstract #136.Google Scholar
  56. 56.
    Jahanfar S, Eden JA, Warren P, Seppala M, Nguyen TV. A twin study of polycystic ovary syndrome. Fertil Steri11995; 63: 478–486.Google Scholar
  57. 57.
    Nuutila P, Knuuti MJ, Maki M, Laine H, Ruotsalainen U, Teras M, Haaparanta M, Solin O, Yki-Jarvinen H. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes 1995; 44: 31–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Foley JE, Kashiwagi A, Chang H, Huecksteadt TP, Lillioja S, Verso MA, Reaven G. Sex differences in insulin-stimulated glucose transport in rat and human adipocytes. Am J Physiol 1984; 246: E211 - E215.PubMedGoogle Scholar
  59. 59.
    Godsland IF, Walton C, Felton C, Proudler A, Patel A, Wynn V. Insulin resistance, secretion, and metabolism in users of oral contraceptives. J Clin Endocrinol Metab 1992; 74: 64–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen JC, Hickman R. Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J Clin Endocrinol Metab 1987; 64: 960–963.PubMedCrossRefGoogle Scholar
  61. 61.
    Polderman KH, Gooren JG, Asscherman H, Bakker A, Heine RJ. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab 1994; 79: 265–271.PubMedCrossRefGoogle Scholar
  62. 62.
    Holmang A, Larsson BM, Brzezinska Z, Bjorntorp P. Effects of short-term testosterone exposure on insulin sensitivity of muscles in female rats. Am J Physiol 1992; 262: E851 - E855.PubMedGoogle Scholar
  63. 63.
    Dunaif A, Green G, Futterweit W, Dobrjansky A. Suppression of hyperandrogenism does not improve peripheral or hepatic insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab 1990; 70: 699–704.PubMedCrossRefGoogle Scholar
  64. 64.
    Elkind-Hirsch KE, Valdes CT, Malinak LR. Insulin resistance improves in hyperandrogenic women treated in Lupron. Fertil Steril 1993; 60: 634–641.PubMedGoogle Scholar
  65. 65.
    Moghetti P, Tosi F, Castello R, Magnani CM, Negri C, Brun E, Furiani L, Caputo M, Mugeo M. Antiandrogens and insulin action. J Clin Endocrinol Metab 1995, in press.Google Scholar
  66. 66.
    Marin P, Krotkiewski M, Bjorntorp P. Androgen treatment of middle-aged, obese men: effects on metabolism, muscle and adipose tissues. Eur J Med 1992; 6: 329–336.Google Scholar
  67. 67.
    Buffington CK, Givens JR, Kitabchi AE. Opposing actions of dehydroepiandrosterone and testosterone on insulin sensitivity. Diabetes 1992; 40: 693–700.CrossRefGoogle Scholar
  68. 68.
    Mortola JF, Yen SCC. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab 1990; 71: 696–704.PubMedCrossRefGoogle Scholar
  69. 69.
    Nestler JE, Barlascini CO, Clore JN, Blackard WG. Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab 1988; 66: 57–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Kahn CR. The molecular mechanism of insulin action. Ann Rev Med 1985; 36: 429–451.PubMedCrossRefGoogle Scholar
  71. 71.
    Diamond MP, Webster BW, Carr RK, Wentz AC, Osteen KG. Human follicular fluid insulin concentrations. J Clin Endocrinol Metab 1985; 61: 990–992.PubMedCrossRefGoogle Scholar
  72. 72.
    Hernandez ER, Hurwitz A, Vera A, Pellicer A, Adashi EY, LeRoith D, Roberts Jr CT. Expression of the genes encoding the insulin-like growth factors and their receptors in the human ovary. J Clin Endocrinol Metab 1992; 74: 419–425.PubMedCrossRefGoogle Scholar
  73. 73.
    Froesch ER, Zapf J. Insulin-like growth factors and insulin: comparative aspects. Diabetologia 1985; 28: 485–493.PubMedCrossRefGoogle Scholar
  74. 74.
    Ullrich A, Bell JR, Chen EY. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985; 313: 756–761.PubMedCrossRefGoogle Scholar
  75. 75.
    Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.PubMedCrossRefGoogle Scholar
  76. 76.
    Ballotti R, Lammers R, Scimeca J-C. Intermolecular transphosphorylation between insulin receptors and EGF-insulin receptor chimerae. EMBO 11989; 8: 3303–3309.Google Scholar
  77. 77.
    Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocrine Rev 1991; 12: 3–13.CrossRefGoogle Scholar
  78. 78.
    Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the Type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 1995, in press.Google Scholar
  79. 79.
    Bach LA, Rechler MM. Insulin-like growth factor binding proteins. Diabetes Rev 1995; 3: 38–61.Google Scholar
  80. 80.
    Theroux SJ, Latour DA, Stanley K, Raden DL, Davis RJ. Signal transduction by the epidermal growth factor receptor is attenuated by a COOH-terminal domain serine phosphorylation site. J Biol Chem 1992; 267: 16, 620–16, 626.Google Scholar
  81. 81.
    Poretsky L, Glover B, Laumas V, Kalin M, Dunaif A. The effects of experimental hyperinsulinernia on steroid secretion, ovarian insulin receptors, and ovarian type I insulin-like-growthfactor receptors in the rat. Endocrinology 1988; 122: 581–585.PubMedCrossRefGoogle Scholar
  82. 82.
    Reddy S, Kahn CR. Epidermal growth factor receptor defects in leprechaunism. J Clin Invest 1989; 84: 1569–1576.PubMedCrossRefGoogle Scholar
  83. 83.
    Low L, Chernausek SD, Sperling MA. Acromegaloid patients with Type A insulin resistance: parallel defects in insulin and insulin-like growth factor-I receptors and biological responses in cultured fibroblasts. J Clin Endocrinol Metab 1989; 69: 329–337.PubMedCrossRefGoogle Scholar
  84. 84.
    Fox JH, Licholai T, Green G, Dunaif A. Differential effects of oral glucose-mediated versus intravenous hyperinsulinemia on circulating androgen levels in women. Fertil Steril 1993; 60: 994–1000.PubMedGoogle Scholar
  85. 85.
    Nestler JE, Barlascini CO, Matt DW. Suppression of serum insulin by diazoxide reduced serum testosterone levels in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 1989; 68: 1027.PubMedCrossRefGoogle Scholar
  86. 86.
    Prelevic GM, Wurzburger MI, Balint-Peric L, Nesic JS. Inhibitory effect of sandostatin on secretion of luteinizing hormone and ovarian steroids in polycystic ovary syndrome. Lancet 1990; 336: 900–903.PubMedCrossRefGoogle Scholar
  87. 87.
    Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 1994; 43: 647–654.PubMedCrossRefGoogle Scholar
  88. 88.
    Nestler JE, Singh R, Matt DW, Clore JN, Blackard WG. Suppression of serum insulin level by diazoxide does not alter serum testosterone or sex hormone-binding globulin levels in healthy, nonobese women. Am J Obstet Gyneco11990; 163: 1243–1246.Google Scholar
  89. 89.
    Adashi EY, Hsueh AJW, Yen SSC. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology 1981; 108: 1441–1449.PubMedCrossRefGoogle Scholar
  90. 90.
    Dunaif A, Graf M. Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with the polycystic ovary syndrome. J Clin Invest 1989; 83: 23–29.PubMedCrossRefGoogle Scholar
  91. 91.
    Nestler JE, Strauss JF, III. Insulin as an effector of human ovarian and adrenal steroid metabolism. Endocrinol Metab Clin North Am 1991; 20: 807–832.PubMedGoogle Scholar
  92. 92.
    Beer NA, Jakubowicz DJ, Beer RM, Nestler JE. Disparate effects of insulin reduction with diltiazem on serum dehydroepiandrosterone sulfate levels in obese hypertensive men and women. J Clin Endocrinol Metab 1994; 79: 1077–1081.PubMedCrossRefGoogle Scholar
  93. 93.
    Nestler JE, Kahwash Z. Sex-specific action of insulin to acutely increase the metabolic clearance rate of dehydroepiandrosterone in humans. J Clin Invest 1994; 94: 1484–1489.PubMedCrossRefGoogle Scholar
  94. 94.
    Plymate SR, Hoop RC, Jones RE, Matej LA. Regulation of sex hormone-binding globulin production by growth factors. Metabolism 1990; 39: 967–970.PubMedCrossRefGoogle Scholar
  95. 95.
    Nestler JE. Editorial. Sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab 1993; 76: 273, 274.Google Scholar
  96. 96.
    Carey AH, Chan KL, Short F, White DM, Williamson R, Franks S. Evidence for a single gene effect in polycystic ovaries and male pattern baldness. Clin Endocrinol 1993; 38: 653–658.CrossRefGoogle Scholar
  97. 97.
    Zhang L-H, Rodriquez H, Ohno S, Miller WL. Serine phosphorylation of human P450c17 increases 17,20 lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci USA 1995, in press.Google Scholar
  98. 98.
    Barbieri RL, Gao X, Frost RA. Phosphorylation of 1713-hydroxysteroid dehydrogenase in BeWo choriocarcinoma cells. Am J Obstet Gynecol 1994; 171: 223–230.PubMedGoogle Scholar
  99. 99.
    Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, Johnston DG, Franks S. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol 1993; 39: 351–355.CrossRefGoogle Scholar
  100. 100.
    LaRosa JC. Androgens and women’s health: genetic and epidemiologic aspects of lipid metabolism. Am J Med 1995; 98: 22S - 26S.PubMedCrossRefGoogle Scholar
  101. 101.
    DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–194.PubMedCrossRefGoogle Scholar
  102. 102.
    Wild RA. Obesity, lipids, cardiovascular risk, and androgen excess. Am J Med 1995; 98: 27S - 32S.PubMedCrossRefGoogle Scholar
  103. 103.
    Talbott E, Guzick D, Clerici A, Berga S, Detre K, Weimer K, Kuller L. Coronary heart disease risk factors in women with polycystic ovary syndrome. Arteriosclerosis Throm Vas Biol 1995; 15: 821–826.CrossRefGoogle Scholar
  104. 104.
    Wild RA, Alaupovic P, Parker IJ. Lipid and apolipoprotein abnormalities in hirsute women. I. The association with insulin resistance. Am J Obstet Gynecol 1992; 166: 1191–1196.PubMedGoogle Scholar
  105. 105.
    Graf M, Brown V, Richards C, Meissner L, Dunaif A. The independent effects of hyperandrogenemia, hyperinsulinemia, and obesity in lipid and lipoprotein profiles in women. Clin Endocrinol 1990; 33: 119–131.CrossRefGoogle Scholar
  106. 106.
    Legro RS, Blanche P, Krauss RM, Lobo RA. Alterations in atherogenic lipoproteins among hyperandrogenic women: influence of insulin and genetic factors. 40th Annual Meeting of Society for Gynecologic Investigation, Toronto, Canada, March, Abstract # P355, p. 360, 1993.Google Scholar
  107. 107.
    Wild RA, Grubb BG, Hartz A, VanNort JJ, Bachman W, Bartholomew M. Clinical signs of androgen excess as risk factors for coronary artery disease. Fertil Steril 1990; 54: 255–259.PubMedGoogle Scholar
  108. 108.
    Dahlgren E, Janson PO, Johansson S, Lapidus L, Oden A. Polycystic ovary syndrome and risk for myocardial infarction. Acta Obstet Gynecol Scand 1992; 71: 599–603.PubMedCrossRefGoogle Scholar
  109. 109.
    Zimmerman S, Phillips RA, Wikenfeld C, Dunaif A, Finegood D, Ardeljan M, Wallenstein S, Gorlin R, Krakoff L. Polycystic ovary syndrome: lack of hypertension despite insulin resistance. J Clin Endocrinol Metab 1992; 75: 508–513.CrossRefGoogle Scholar
  110. 110.
    Saad MF, Lillioja S, Nyomba BL. Racial differences in the relation between blood pressure and insulin resistance. New Engl J Med 1991; 324: 733–739.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Andrea Dunaif
  • Carol Beth Book

There are no affiliations available

Personalised recommendations