Energy Metabolism and Sympathetic Activity in Patients with Insulin Resistance

  • Luc Tappy
  • Nicolas Paquot
Part of the Contemporary Biomedicine book series (CB, volume 15)


All living organisms require a continuous supply of energy to maintain their structure and carry over their functions. In humans, the near totality of energy is obtained from oxidative phosphorylation, which occurs in mitochondria. In this process, reducing equivalents (NADH, FADH2) issued from degradation of endogenous or alimentary carbohydrates, lipids, and fat react with molecular oxygen, ADP, and inorganic phosphorus to produce H2O and ATP, the latter being the “energy battery” of cells (1, 2).


Brown Adipose Tissue Rest Metabolic Rate Muscle Sympathetic Nerve Activity Exogenous Glucose Carbohydrate Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kleiber M. The Fire of Life Huntington, NY: Robert E. Krieger, 1975.Google Scholar
  2. 2.
    Mayes PA. Biologic oxidation. In: Harper’s Review of Biochemistry. Martin DW, Mayes PA, Rod-well VW, Granner DK. Los Altos: Lange Medical Publications, pp. 128–146, 1985.Google Scholar
  3. 3.
    Flatt JP. The biochemistry of energy expenditure. In: Recent Advances in Obesity Research. Bray GA, ed. London: Newman Publishing, pp. 211–228, 1978.Google Scholar
  4. 4.
    Jéquier E. Long-term measurement of energy expenditure in man: direct or indirect calorimetry? In: Recent Advances in Obesity Research: III. Bjrntorp P, Cairella M, Howard AN, eds. London: John Libbey, pp. 130–135, 1981.Google Scholar
  5. 5.
    Jéquier E, and Felber J. Indirect calorimetry. Baillière’s Clin Endocrinol Metab 1987; 1: 911–935.PubMedCrossRefGoogle Scholar
  6. 6.
    Livesey G, Elia M. Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry evaluation of errors with special reference to the detailed composition of foods. Am J Clin Nutr 1988; 47: 608–628.PubMedGoogle Scholar
  7. 7.
    Ravussin E, Burnand B, Schutz Y, Jéquier E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese and control subjects. Am J Clin Nutr 1982; 35: 566–573.PubMedGoogle Scholar
  8. 8.
    Schoeller DA, Klein PD, Watkins JB, Heim T, MacLean Jr WC. 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests. Am J Clin Nutr 1980: 33: 2375–2385.PubMedGoogle Scholar
  9. 9.
    Schoeller DA. Limitations in the assessment of dietary energy intake by self-report. Metabolism 1995; 44 (2 Suppl 2): 18–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Bouten CV, Westerterp KR, Verduin M, Janssen JD. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc 1994; 26: 1516–1523.PubMedGoogle Scholar
  11. 11.
    Ravussin E, Acheson KJ, Vernet O, Danforth EJ, Jéquier E. Thermic effect of infused glucose and insulin man. Decreased response with increased insulin resistance in obesity and noninsulin dependent diabetes mellitus. J Clin Invest 1983; 72: 893–902.Google Scholar
  12. 12.
    Owen 0E, Holup JL, D’Alessio DA, Craig ES, Polansky M, Smalley KJ, Kavle EC, Bushman MC, Owen LR, Mozzoli MA, et al. Am J Clin Nutr 1987; 46: 875–885.Google Scholar
  13. 13.
    Durnin JVGA, Womersley J. Body fat assessment for total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Brit J Nutr 1974; 32: 77–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Ravussin E, Lillioja S, Anderson TE, Clington L, Bogardus C. Determinant of 24-hour energy expenditure in man: method and result using a respiratory chamber. J Clin Invest 1986; 78: 1568–1578.PubMedCrossRefGoogle Scholar
  15. 15.
    Weinsier R, Schutz Y, Bracco D. Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. Am J Clin Nutr 1992; 55: 790–794.PubMedGoogle Scholar
  16. 16.
    Tappy L, Jéquier E. Fructose and dietary thermogenesis. Am J Clin Nutr 1993; 58 (Suppl): 766S - 770S.PubMedGoogle Scholar
  17. 17.
    Thiébaud D, Acheson K, Schutz Y, Felber JP, Golay A, DeFronzo RA, Jéquier E. Stimulation of thermogenesis in men after combined glucose long-chain triglyceride infusion. Am J Clin Nutr 1983; 37: 603–611.PubMedGoogle Scholar
  18. 18.
    Thiébaud D, Schutz Y, Acheson K, Jacot E, DeFronzo R, Felber J, Jéquier E. Energy cost of glucose storage inhuman subjects during glucose-insulin infusions. Am J Physiol 1983; 244: E216 - E221.PubMedGoogle Scholar
  19. 19.
    Acheson KJ, Jéquier E, Wahren J. Influence of 13-adrenergic blockade on glucose-induced thermogenesis in man. J Clin Invest 1983; 72: 981–986.PubMedCrossRefGoogle Scholar
  20. 20.
    Acheson KJ, Ravussin E, Wahren J. Thermic effect of glucose in man: obligatory and facultative thermogenesis. J Clin Invest 1984; 74: 1572–1580.PubMedCrossRefGoogle Scholar
  21. 21.
    Hellerstein MK, Christiansen M, Kaempfer S. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 1991; 87: 1841–1852.PubMedCrossRefGoogle Scholar
  22. 22.
    Nacht CA, Schutz Y, Vernet O, Christin L, Jéquier E. Continuous versus single bolus enternal nutrition: comparison of energy metabolism in humans. Am J Physiol 1986; 251: E524 - E529.PubMedGoogle Scholar
  23. 23.
    Schneeberger D, Tappy L, Temler E, Jeanprêtre N, Jéquier E. Effects of muscarinic blockade on the thermic effect of oral or intravenous carbohydrate. Eur JAppl Physiol 1991; 63: 242–249.CrossRefGoogle Scholar
  24. 24.
    Dériaz O, Nacht CA, Chioléro R, Jéquier E, Acheson KJ. The parasympathetic nervous system and the thermic effect of glucose/insulin infusions in humans. Metabolism 1989; 38: 1082–1088.PubMedCrossRefGoogle Scholar
  25. 25.
    Acheson KJ. Influence of autonomic nervous system on nutrient-induced thermogenesis in humans. Nutrition 1993; 9: 373–380.PubMedGoogle Scholar
  26. 26.
    Schwarz JM, Schutz Y, Froidevaux F, Acheson K, Jeanprêtre N, Schneider H, Felber JP, Jéquier E. Thermogenesis in men and women induced by fructose vs glucose added to a meal. Am J Clin Nutr 1989; 49: 667–674.PubMedGoogle Scholar
  27. 27.
    Tappy L, Randin JP, Felber JP, Chioléro R, Simonson DC, Jéquier E, DeFronzo RA. Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol 1986; 250: E718 - E724.PubMedGoogle Scholar
  28. 28.
    Christin L, O’Connell M, Bogardus C, Danforth EJ, Ravussin E. Norepinephrine turnover and energy expenditure in Pima Indian and white men. Metabolism 1993; 42: 723–729.PubMedCrossRefGoogle Scholar
  29. 29.
    Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A, Knowler WC, Jacobowitz R, Moll PP. Familial dependence of the resting metabolic rate. New Engl J Med 1986; 315: 96–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Tappy L, Acheson K, Curchod B, Schneiter P, Normand S, Pachiaudi C, Temler E, Riou JP, Jéquier E. Overnight glucose metabolism in obese non-insulin-dependent diabetic patients and in healthy lean individuals. Clin Physiol 1994; 14: 251–265.PubMedCrossRefGoogle Scholar
  31. 31.
    Bogardus C, Taskinen MR, Zawadzki J, Lillioja S, Mott D, Howard BV. Increased resting metabolic rates in obese subjects with non-insulin-dependent diabetes mellitus and the effect of sulfonylurea therapy. Diabetes 1986; 35: 1–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Fontvieille AM, Lillioja S, Ferraro RT, Schulz LO, Rising R, Ravussin E. Twenty-four-hour energy expenditure in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992; 35: 753–759.PubMedGoogle Scholar
  33. 33.
    Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C. Reduced rate of energy expenditure as a risk factor for body-weight gain. New Engl J Med 1988; 318: 467–472.PubMedCrossRefGoogle Scholar
  34. 34.
    Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992; 90: 1323–1327.PubMedCrossRefGoogle Scholar
  35. 35.
    Zawadski JK, Wolfe RR, Mott DM, Lillioja S, Howard BV, Bogardus C. Increased rate of Cori cycle in obese subjects with NIDDM and effect of weight reduction. Diabetes 1988; 37: 154–159.CrossRefGoogle Scholar
  36. 36.
    Efendic S, Karlander S, Vranic M. Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity. J Clin Invest 1988; 81: 1953–1961.PubMedCrossRefGoogle Scholar
  37. 37.
    Rooney DP, Neely RDG, Beatty O, Bell NP, Sheridan B, Atkinson AB, Trimble ER, Bell PM. Contribution of glucose/glucose 6-phosphate cycle activity to insulin resistance in type 2 diabetes mellitus. Diabetologia 1993; 36: 106–112.PubMedCrossRefGoogle Scholar
  38. 38.
    Golay A, Schutz Y, Meyer H, Thiébaud D, Curchod B, Maeder E, Felber J, Jéquier E. Glucose-induced thermogenesis in nondiabetic and diabetic obese subjects. Diabetes 1982; 11: 1023–1028.Google Scholar
  39. 39.
    D’Alessio, EC, Kayle MA, Smalley KJ, Polansky M, Kenrick ZV, Owen LR, Bushman MC, Boden G, Owen 0E. Thermic effect of food in lean and obese men. J Clin Invest 1988; 81: 1781–1789.PubMedCrossRefGoogle Scholar
  40. 40.
    Golay A, Schutz Y, Felber JP, DeFronzo RA, Jéquier E. Lack of thermogenic response to glucose/insulin infusion in diabetic obese subjects. Int J Obes 1986; 10: 107–116.PubMedGoogle Scholar
  41. 41.
    Felber JP, Acheson KJ, Tappy L. From Obesity to Diabetes. Chichester: John Wiley, 1992.Google Scholar
  42. 42.
    Ravussin E, Acheson KJ, Vernet O, Danforth EJ, Jéquier E. Evidence that insulin resistance is responsible for the decreased thermic effect of glucose in human obesity. J Clin Invest 1985; 76: 1268–1273.PubMedCrossRefGoogle Scholar
  43. 43.
    Simonson DC, Tappy L, Jéquier E, Felber JP, DeFronzo RA. Normalization of carbohydrate-induced thermogenesis by fructose in insulin-resistant states. Am J Physiol 1988; 254: E201 - E207.PubMedGoogle Scholar
  44. 44.
    Tappy L, Jéquier E, Acheson K. Thermic effect of infused amino acids in healthy humans and in subjects with insulin resistance. Am J Clin Nutr 1993; 57: 912–916.PubMedGoogle Scholar
  45. 45.
    Ruttiman Y, Chioléro R, Jéquier E, Breitenstein E, Schutz Y. Effects of dopamine on total oxygen consumption and oxygen delivery in healthy men. Am J Physiol 1989; 257: E541 - E546.Google Scholar
  46. 46.
    Sjöstrom L, Schutz Y, Gudinchet F, Hegnell L, Pittet PG, Jéquier E. Epinephrine sensitivity with respect to metabolic rate and other variables in women. Am J Physiol 1983; 245: E431 - E442.PubMedGoogle Scholar
  47. 47.
    Webber J, Macdonald IA. A comparison of the cardiovascular and metabolic effects of incremental versus continuous dose adrenaline infusions in men and women. Int J Obesity 1993; 17: 37–43.Google Scholar
  48. 48.
    Kusaka M, Ui M. Activation of the Cori cycle by epinephrine. Am J Physiol 1977; 232: E145 - E155.PubMedGoogle Scholar
  49. 49.
    Saad MF, Alber SA, Zurlo F, Young JB, Bogardus C, Ravussin E. Ethnic differences in sympathetic nervous system-mediated energy expenditure. Am J Physiol 1991; 261: E789 - E794.PubMedGoogle Scholar
  50. 50.
    Spraul M, Ravussin E, Fontvieille AM, Rising R, Larson DE, Anderson EA. Reduced sympathetic nervous activity. J Clin Invest 1993; 92: 1730–1735.PubMedCrossRefGoogle Scholar
  51. 51.
    Scherrer U, Randin D, Tappy L, Vollenweider P, Jéquier E, Nicod P. Body fat and sympathetic nerve activity in healthy subjects. Circulation 1994; 89: 2634–2640.PubMedCrossRefGoogle Scholar
  52. 52.
    Tappy L, Girardet K, Schwaller N, Vollenweider L, Jéquier E, Nicod P, Scherrer U. Metabolic effects of an increase of sympathetic activity in healthy humans. Int J Obes 1995; 19: 419–422.Google Scholar
  53. 53.
    Acheson KJ, Ravussin E, Schoeller DA, Christin L, Bourquin L, Baertschi P, Danforth EJ, Jéquier E. Two week stimulation or blockade of the sympathetic nervous system in man; influence on body weight, body composition and twenty-four hour energy expenditure. Metabolism 1988; 37: 91–98.PubMedCrossRefGoogle Scholar
  54. 54.
    DeFronzo RA, Thorin D, Felber JP, Simonson DC, Thiébaud D. Effect of beta-and alpha adrenergic blockade on glucose-induced thermogenesis in man. J Clin Invest 1984; 73: 633–639.PubMedCrossRefGoogle Scholar
  55. 55.
    Randin D, Vollenweider P, Tappy L, Jéquier E, Nicod P, Scherrer U. Effects of adrenergic and cholinegic blockade on insulin-induced stimulation of calf blood flow in humans. Am J Physiol 1994; 266: R809 - R816.PubMedGoogle Scholar
  56. 56.
    Vernet O, Nacht CA, Christin L, Schutz Y, Danforth EJ, Jéquier E. Beta-adrenergic blockade and iv nutrient induced thermogenesis in lean and obese women. Am J Physiol 1987; 253: E65 - E71.PubMedGoogle Scholar
  57. 57.
    Welle S, Schwartz RG, Statt M. Reduced metabolic rate during I3-adrenergic blockade in humans. Metabolism 1991; 40: 619–622.PubMedCrossRefGoogle Scholar
  58. 58.
    Haesler E, Schneiter P, Temler E, Jéquier E, Tappy L. Effects of lactate infusion on hepatic gluconeogenesis and glycogenolysis. Clin Physiol 1995; 15: 581–595.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwarz JM, Acheson KJ, Tappy L, Piolino V, Müller MJ, Felber JP, Jéquier E. Thermogenesis and fructose metabolism in humans. Am J Physiol 1992; 262: E591 - E598.PubMedGoogle Scholar
  60. 60.
    Rothwell NJ. Central effects of CRF on metabolism and energy balance. Neurosci Biobehav Rev 1990; 14: 263–271.PubMedCrossRefGoogle Scholar
  61. 61.
    Vettor R, Zarjevski N, Cusin I, Rohner-Jeanrenaud F, Jeanrenaud B. Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats. Diabetologia 1994; 37: 1202–1208.PubMedCrossRefGoogle Scholar
  62. 62.
    Astrup A, Bulow J, Madsen J, Christensen NJ. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 1985; 248: E507 - E515.PubMedGoogle Scholar
  63. 63.
    Astrup A, Simonsen L, Bulow J, Madsen J, Christensen NJ. Epinephrine mediates facultative carbohydrate-induced thermogenesis in human skeletal muscle. Am J Physio11989; 257: E340 - E345.Google Scholar
  64. 64.
    Jensen MD, Johnson CM, Cryer PE, Murray MJ. Thermogenesis after a mixed meal: role of leg and splanchnic tissues in men and women. Am J Physiol 1995; 268: E433 - E438.PubMedGoogle Scholar
  65. 65.
    Rowe JW, Young JB, Minaker KL, Stevens AL, Pallota J, Landsberg L, Effects of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981; 30: 219–225.PubMedGoogle Scholar
  66. 66.
    Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991; 87: 2246–2252.PubMedCrossRefGoogle Scholar
  67. 67.
    Berne C, Fagius J, Pollare T, Hjemdahl P. The sympathetic response to euglycaemic hyperinsulinaemia. Evidence from microelectrode nerve recordings in healthy subjects. Diabetologia 1992; 35: 873–879.PubMedCrossRefGoogle Scholar
  68. 68.
    Vollenweider P, Tappy L, Randin D, Schneiter P, Jéquier E, Nicod P, Scherrer U. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 1993; 92: 147–154.PubMedCrossRefGoogle Scholar
  69. 69.
    Scherrer U, Vollenwider P, Randin D, Jéquier E, Nicod P, Tappy L. Suppression of insulin induced sympathetic activation and vasodilation by dexamethasone in humans. Circulation 1993; 88: 388–394.PubMedCrossRefGoogle Scholar
  70. 70.
    Vollenweider P, Randin D, Tappy L, Jéquier E, Nicod P, Scherrer U. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Diabetes 1995; 44: 641–645.PubMedCrossRefGoogle Scholar
  71. 71.
    Morgan DA, Anderson EA, Mark AL. Renal sympathetic nerve activity is increased in obese zucker rats. Hypertension 1994; 25 (part 2): 834–838.Google Scholar
  72. 72.
    Vollenweider P, Randin D, Tappy L, Jéquier E, Nicod P, Scherrer U. I. Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. J Clin Invest 1994; 93: 2365–2371.PubMedCrossRefGoogle Scholar
  73. 73.
    Spraul M, Anderson EA, Bogardus C, Ravussin E. Muscle sympathetic nerve activity in response to glucose ingestion. Diabetes 1994; 43: 191–196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Luc Tappy
  • Nicolas Paquot

There are no affiliations available

Personalised recommendations