Advertisement

Biodynamics pp 290-369 | Cite as

Blood Flow in the Lung

  • Y. C. Fung

Abstract

We shall now apply the general principles discussed in the preceding chapters to one organ, the lung. The purpose is to illustrate, in one concrete example, the use of physical principles, with the help of anatomy and histology, to explain and predict the function of an organ in quantitative terms.

Keywords

Pulmonary Artery Pulmonary Vein Apparent Viscosity Sheet Thickness Pulmonary Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banister, J. and Torrance, R. W. (1960). The effects of the tracheal pressure upon flow : Pressure relations in the vascular bed of isolated lungs Q. J. Exp. Physiol. 45: 352–367.Google Scholar
  2. Benjamin, J. J., Murtagh, P. S., Proctor, D. F., Menkes, H. A. and Permutt, S. (1974). Pulmonary vascular interdependence in excised dog lobes J. Appl. Physiol. 37: 887–894.Google Scholar
  3. Bergel, D. H. and Milnor, W. R. (1965). Pulmonary vascular impedance in the dog Circ. Res. 16 : 401–415.CrossRefGoogle Scholar
  4. Bhattacharya, J. and Staub, N. C. (1980). Direct measurement of microvascular pressure in the isolated, perfused dog lung Science 210: 327–328.ADSCrossRefGoogle Scholar
  5. Bhattacharya, J., Overholser, K., Gropper, M. and Staub, N. C. (1982). Comparison of pressures measured by micropuncture and venous occulsion in Zones III and II of the isolated dog lung Federation Proc. 41: 1685. (Abstract).Google Scholar
  6. Brody, J. S., Stemmler, E. J. and duBois, A. B. (1968). Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins J. Clin. Invest. 47: 783–784.CrossRefGoogle Scholar
  7. Bruderman, I., Somers, K., Hamilton, W. K., Tooley, W. H. and Butler, J. (1964). Effect of surface tension on circulation in the excised lungs of dogs J. Appl. Physiol. 19: 707–712.Google Scholar
  8. Caro, C. G., Harrison, G. K. and Mognoni, P. (1967). Pressure wave transmission in the human pulmonary circulation Clin. Sci. 23: 317–329.Google Scholar
  9. Cramer, H. (1946) Mathematical Method of Statistics, Princeton University Press, Princeton, N.J.Google Scholar
  10. Cumming, G., Henderson, R., Horsfield, K. and Singhal, S. S. (1969). The functional morphology of the pulmonary circulation. In the Pulmonary Circulation and Interstitial Space. (A. P. Fishman and H. H. Hecht, eds.) Univ. of Chicago Press, Chicago, IL, pp. 327–338.Google Scholar
  11. Daly, I. de B., and Hebb, C. (1966) Pulmonary and Bronchial Vascular Systems. Williams &; Wilkins, Co.Google Scholar
  12. Dawson, S. V. and Elliott, E. A. (1977). Wave-speed limitation on expiratory flow-a unifying concept J. Appl. Physiol. 43 (3) : 398–515.Google Scholar
  13. De Bono, E. F. and Caro, C. G. (1963). Effect of lung inflation pressure on pulmonary blood pressure and flow Amer. J. Physiol. 205: 1178–1186.Google Scholar
  14. Fishman, A. P. (1963). Dynamics of the pulmonary circulation. In Handbook of Physiology, Sec. 2 Circulation, Vol. II (W. H. Hamilton and P. Dow, eds.). Amer. Physiol. Soc., Washington, D.C. pp. 1667–1743.Google Scholar
  15. Fishman, A. P. (1972). Pulmonary edema : The water exchange function of the lung Circulation. 46: 390–408.CrossRefGoogle Scholar
  16. Fishman, A. P. and Hecht, H. H. (eds.) (1968) The Pulmonary Circulation and Interstitial Space. Univ. of Chicago Press, Chicago, IL.Google Scholar
  17. Folkow, G. and Neil, E. (1971) Circulation. Oxford Univ. Press, New York.Google Scholar
  18. Fung, Y. C. (1969). Studies on the blood flow in the lung. In Proceedings of the Second Canadian Congress of Applied Mechanics, Waterloo, Canada, pp. 433–545.Google Scholar
  19. Fung, Y. C. (1972). Theoretical pulmonary microvascular impedance Annals of Biomedical Eng. 1: 221–245.CrossRefGoogle Scholar
  20. Fung, Y. C. (1974). Fluid in the interstitial space of the pulmonary alveolar sheet Microvas. Res. 7: 89–113.CrossRefGoogle Scholar
  21. Fung, Y. C. (1981) Biomechanics: Mechanical Properties of Living Tissues. SpringerVerlag, New York.Google Scholar
  22. Fung, Y. C. (1984) Biodynamics: Flow, Motion, and Stress. Springer-Verlag, New York. In press.Google Scholar
  23. Fung, Y. C. and Sobin, S. S. (1969). Theory of sheet flow in lung alveoli J. Appl. Physiol. 26 (4) : 472–488.Google Scholar
  24. Fung, Y. C. and Sobin, S. S. (1972a). Elasticity of the pulmonary alveolar sheet Circ. Res. 30 : 451–469.CrossRefGoogle Scholar
  25. Fung, Y. C. and Sobin, S. S. (1972b). Pulmonary alveolar blood flow Circ. Res. 30: 470–490.CrossRefGoogle Scholar
  26. Fung, Y. C. and Sobin S. S. (1977a). Pulmonary alveolar blood flow. In Bioengineering Aspects of Lung Biology (J. B. West, ed.) Marcel Dekker, New York, pp. 267–358.Google Scholar
  27. Fung, Y. C. and Sobin, S. S. (1977b). Mechanics of pulmonary circulation. In Cardiovascular Flow Dynamics and Measurements. (N. H. C. Hwang and N. A. Norman, eds.) University Park Press, Baltimore, MD, pp. 665–730.Google Scholar
  28. Fung, Y. C., Sobin, S. S., Tremer, H., Yen, M. R. T. and Ho, H. H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure J. Appl. Physiol. Resp. Envir. and Exer. Phy. 54: 1538–1549.Google Scholar
  29. Gaar, K. A. Jr., Taylor, A. E., Owens, L. J. and Guyton, A. C. (1967). Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung Am. J. Physiol. 213: 910–914.Google Scholar
  30. Giuntini, C. (ed.) (1970) Central Hemodynamics and Gas Exchange. Minerva Medica, Torino, Italy.Google Scholar
  31. Glazier, J. B., Hughes, J. M. B., Maloney, J. E. and West, J. B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs J. Appl. Physiol. 26: 65–76.Google Scholar
  32. Guyton, A. C. and Lindsey, A. W. (1959). Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema Circ. Res. 7: 649–657.CrossRefGoogle Scholar
  33. Hakim, T. S., Michel, R. P. and Chang, H. K. (1982). Partition of pulmonary vascular resistance in dog by arterial and venous occulsion J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52 : 710–715.Google Scholar
  34. Horsfield, K. (1978). Morphometry of the small pulmonary arteries in man Circ. Res. 42: 593–597.CrossRefGoogle Scholar
  35. Hughes, J. M. B., Glazier, J. B., Maloney, J. E. and West, J. B. (1968). Effect of extraalveolar vessels on distribution of blood flow in the dog lung J. Appl. Physiol. 25: 701–712.Google Scholar
  36. Johnson, R. L., Jr., Spicer, W. S., Bishop, J. M. and Forster, R. E. (1960). Pulmonary capillary blood volume, flow and diffusing capacity during exercise J. Appl. Physiol. 15: 893–902.Google Scholar
  37. Krahl, V. E. (1964). Anatomy of mammalian lung. In Handbook of Physiology. (W. O. Fenn & H. Rahn, eds.) Sec. 3, Respiration, Vol. 1, Amer. Physiology Society, Washington, D.C. pp. 213–284.Google Scholar
  38. Lai-Fook, S. J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes, J. Appl. Physiol. Respirat. Environ., Exercise Physiol. 46: 419–429.Google Scholar
  39. Lee, J. S. (1969). Slow viscous flow in a lung alveoli model J. Biomech. 2: 187–198.CrossRefGoogle Scholar
  40. Lee, J. S. and Fung, Y. C. (1968). Experiments on blood flow in lung alveoli models. Paper No. 68-WA/BHF-2, American Society of Mech. Engineers. pp. 1–8.Google Scholar
  41. Lloyd, T. C., Jr. (1967). Analysis of the relation of pulmonary arterial or airway conductance to lung volume, J. Appl. Physiol. 23: 887–894.Google Scholar
  42. Maloney, J. E., and Castle, B. L. (1969). Pressure-diameter relations of capillaries and small blood vessels in frog lung Respiration Physiology 7: 150–162.CrossRefGoogle Scholar
  43. Maseri, A., Caldini, P., Permutt, S. and Zierler, K. L. (1970). Frequency function of transit times through dog pulmonary circulation Circ. Res. 26: 527–543.CrossRefGoogle Scholar
  44. Miller, W. S. (1947) The Lung. Thomas, Springfield, IL.Google Scholar
  45. Milnor, W. R. (1972). Pulmonary hemodynamics. In Cardiovascular Fluid Dynamics, (D. H. Bergel, ed.) Vol. 2, Academic Press, New York, Ch. 18, pp. 299–340.Google Scholar
  46. Milnor, W. R., Bergel, D. H., and Bargainer, J. D. (1966). Hydraulic power associated with pulmonary blood flow and its relation to heart rate Circ. Res. 19: 467–480.CrossRefGoogle Scholar
  47. Milnor, W. R., Conti, C. R., Lewis, K. B. and O’Rourke, M. F. (1969). Pulmonary arterial pulse wave velocity and impedance in man Circ. Res. 25 : 637–649.CrossRefGoogle Scholar
  48. Miyamoto, Y., and Moll, W. A. (1971). Measurements of dimensions and pathway of red blood cells in rapidly frozen lungs in situ. Respir. Physiol. 12 : 141–156.CrossRefGoogle Scholar
  49. Nagaishi, C. (1972) Functional Anatomy and Histology of the Lung. University Park Press, Baltimore, MD.Google Scholar
  50. Patel, D. J., de Freitas, F. M. and Fry, D. L. (1963). Hydraulic input impedance to aorta and pulmonary artery in dogs J. Appl. Physiol. 18 : 134–140.Google Scholar
  51. Permutt, S., Bromberger-Barnea, B., and Bane, H. N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall Med. Thorac. 19 : 239–260.Google Scholar
  52. Permutt, S. and Riley, R. L. (1963). Hemodynamics of collapsible vessels with tone : the vascular waterfall J. Appl. Physiol. 18: 924–932.Google Scholar
  53. Permutt, S., Caldini, P., Maseri, A., Palmer, W. H., Sasamori, T. and Zierler, K. (1969). Recruitment versus distensibility in the pulmonary vascular bed. In The Pulmonary Circulation and Interstitial Space. (A. P. Fishman and H. H. Hecht, eds.) Univ. of Chicago Press, Chicago, IL, pp. 375–387.Google Scholar
  54. Pollack, G. H., Reddy, R. V. and Noordergraaf, A. (1968). Input impedance, wave travel, and reflections in the human pulmonary arterial tree : studies using an electrical analog IEEE Trans. Biomedical Eng. BME-15, 151–164.CrossRefGoogle Scholar
  55. Purday, H. F. P. (1949) An Introduction to the Mechanics of Viscous Flow. Dover, New York, pp. 16–18.MATHGoogle Scholar
  56. Roos, A., Thomas, L. J., Jr., Nagel, E. L. and Prommas, D. C. (1961). Pulmonary vascular resistance as determined by lung inflation and vascular pressures J. Appl. Physiol. 16: 77–84.Google Scholar
  57. Rosenquist, T. H., Bernick, S., Sobin, S. S. and Fung, Y. C. (1973). The structure of the pulmonary interalveolar microvascular sheet Microvascular Res. 5: 199–212.CrossRefGoogle Scholar
  58. Schultz, H. (1959) The Submiscroscopic Anatomy and Pathology of the Lung. SpringerVerlag, Berlin.Google Scholar
  59. Singhal, S., Henderson, R., Horsfield, K., Harding, K. and Cumming, G. (1973). Morphometry of the human pulmonary arterial tree Circ. Res. 33: 190–197.CrossRefGoogle Scholar
  60. Skalak, R. (1969). Wave propagation in the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space. (A. P. Fishman and H. H. Hecht, eds.) Univ. of Chicago Press, Chicago, IL, pp. 361–373.Google Scholar
  61. Skalak, R., Wiener, F., Morkin, E. and Fishman, A. P. (1966). The energy distribution in the pulmonary circulation. Part I. Theory Phys. Med. Biol. 11(2): 287–294 ; Part II : Experiments, ibid 11(3) : 437–449.CrossRefGoogle Scholar
  62. Smith, J. C. and Mitzner, W. (1980). Analysis of pulmonary vascular interdependence in excised dog lobes J. Appl. Physiol: Respirat. Envir. Exercise. Physiol. 48(3): 450–467.Google Scholar
  63. Sobin, S. S. and Tremer, H. M. (1966). Functional geometry of the microcirculation Federation Proceedings 15: 1744–1752.Google Scholar
  64. Sobin, S. S., Tremer, H. M. and Fung, Y. C. (1970). The morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat Circulation Res. 26: 397–414.CrossRefGoogle Scholar
  65. Sobin, S. S., Fung, Y. C., Tremer, H. M., and Rosenquist, T. H. (1972). Elasticity of the pulmonary alveolar microvascular sheet in the cat Circulation Res. 30 : 440–450.CrossRefGoogle Scholar
  66. Sobin, S. S., Lindal, R. G. and Bernick, S. (1977). The pulmonary arteriole Microvas. Res. 14: 227–239.CrossRefGoogle Scholar
  67. Sobin, S. S., Lindal, R. G., Fung, Y. C. and Tremer, H. M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat Microvas. Res. 15 : 57–68.CrossRefGoogle Scholar
  68. Sobin, S. S., Fung, Y. C., Lindal, R. G., Tremer, H. M. and Clark, L. (1980). Topology of pulmonary arterioles, capillaries, and venules in the cat Microvas. Res. 19: 217–233.CrossRefGoogle Scholar
  69. Sobin, S. S., Fung, Y. C. and Tremer, H. M. (1982). The effect of incomplete fixation of elastin on the appearance of pulmonary alveoli J. Biomechanical Eng. 104: 68–71.CrossRefGoogle Scholar
  70. Starling, E. H. (1915) The Linacre lecture on the law of the heart, given at Cambridge, 1915. Longmans, Green & Co., London, 1918. In Starling on The Heart. (C. B. Chapman and J. H. Mitchell, eds.) facs. reprints; Dawson, London, 1965, pp. 119–147.Google Scholar
  71. Staub, N. C. (ed.) (1978) Lung Water and Solute Exchange. Marcel Dekker, New York.Google Scholar
  72. Staub, N. C., Nagano, H. and Pearce, M. L. (1967). Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs J. Appl. Physiol. 22: 227–240.Google Scholar
  73. Staub, N. C. and Schultz, E. L. (1968). Pulmonary capillary length in dog, cat, and rabbit J. Appl. Physiol. 5: 371–378.Google Scholar
  74. Tancredi, R. and Zierler, K. L. (1971). Indicator-dilution, flow-pressure and volumepressure curves in excised dog lung Fed. Proc. 30: 380 (Abstract).Google Scholar
  75. von Hayek, H. (1960) The Human Lung. Hefner, New York.Google Scholar
  76. Wagner, W. W., Jr., Latham, L. P., Gillespie, M. N. and Guenther, J. P. (1982). Direct measurement of pulmonary capillary transit times Science 218: 279–381.CrossRefGoogle Scholar
  77. Warrell, D. A., Evans, J. W., Clarke, R. O., Kingaby, G. P., and West, J. B. (1972). Pattern of filling in the pulmonary capillary bed J. Appl. Physiol. 32: 346–356.Google Scholar
  78. Weibel, E. R. (1963) Morphometry of the Human Lung. Academic Press, New York.Google Scholar
  79. Weibel, E. R. (1973). Morphological basis of alveolar-capillary gas exchange Physiol. Res. 53: 419–495.Google Scholar
  80. Weiner, D. E., Verrier, R. L., Miller, D. T. and Lefer, A. M. (1967). Effect of adrenalectomy on hemodynamics and regional blood flow in the cat Am. J. Physiol. 213: 473–476.Google Scholar
  81. West, J. B. (1974) Respiratory Physiology-the Essentials. Williams & Wilkins, Baltimore, MD.Google Scholar
  82. West, J. B. (1977) Regional Differences in the Lung. Academic Press, New York.Google Scholar
  83. West, J. B. (ed.) (1977) Bioengineering Aspects of the Lung, Marcel Dekker, New York.Google Scholar
  84. West, J. B., Dollery, C. T. and Naimark, A. (1964). Distribution of blood in isolated lung : relation to vascular and alveolar pressure J. Appl. Physiol. 19 : 713–724.Google Scholar
  85. West, J. B. and Dollery, C. T. (1965). Distribution of blood flow and the pressure-flow relations of the whole lung J. Appl. Physiol. 20. 175–183.Google Scholar
  86. West, J. B., Dollery, C. T., Matthews, C. M. E. and Zardini, P. (1965). Distribution of blood flow and ventilation in saline-filled lung J. Appl. Physiol. 20: 1107–1117.Google Scholar
  87. Wiener, F., Morkin, E., Skalak, R. and Fishman, A. P. (1966). Wave propagation in the pulmonary circulation Circ. Res. 19: 834–850.CrossRefGoogle Scholar
  88. Yen, M. R. T. and Fung, Y. C. (1973). Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli J. Appl. Physiol. 35: 510–517.Google Scholar
  89. Yen, M. R. T., Fung, Y. C. and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat J. Biomech. Eng., Trans. ASME 102: 170–177.CrossRefGoogle Scholar
  90. Yen, M. R. T. and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat J. Biomech. Eng., Trans. ASME 103: 38–42.CrossRefGoogle Scholar
  91. Yen, R. T., Zhuang, F. Y., Fung, Y. C., Ho, H. H., Tremer, H. and Sobin, S. S. (1983a). Morphometry of the cat’s pulmonary venous tree J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55 : 236–242.Google Scholar
  92. Yen, R. T., Zhuang, F. Y., Fung, Y. C., Ho, H. H. and Sobin, S. S. (1983b). Morphometry of the cat’s pulmonary arteries J. Biomech. Eng. In press.Google Scholar
  93. Yen, R. T., Fung, Y. C., Zhuang, F. Y., and Zeng, Y. J. (1983c) “Comparison of theory and experiments of blood flow in cat’s lung”. Paper presented at the First China— Japan— USA Conference on Biomechanics, held in Wuhan, on May 9–13, 1983. To appear in a forthcoming book Biomechanics in China, Japan, and USA, Chinese Scientific Press., Beijing, China.Google Scholar
  94. Zhuang, F. Y., Fung, Y. C., and Yen, R. T. (1983a). Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55 : 1341–1348.Google Scholar
  95. Zhuang, F. Y., Yen, M. R. T., Fung, Y. C. and Sobin, S. S. (1983b). How many pulmonary alveoli are supplied (drained) by an arteriole (venule) ? Microvas. Res. In press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations