Biodynamics pp 77-165 | Cite as

Blood Flow in Arteries

  • Y. C. Fung


The larger systemic arteries, shown in Fig. 3.1:1, conduct the blood from the heart to the peripheral organs. Their dimensions are given in Table 3.1:1. In man, the aorta originates in the left ventricle at the aortic valve, and almost immediately curves about 180°, branching off to the head and upper limbs. It then pursues a fairly straight course down through the diaphragm to the abdomen and legs. The aortic arch is tapered, curved, and twisted (i.e., it does not lie in a plane). The other arteries have a constant diameter between branches, but every time a daughter branch forks off the main trunk the diameter of the aorta is reduced. Overall, the aorta may be described as tapered.


Pulse Wave Wave Speed Input Impedance Pulsatile Flow Elastic Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. In addition to articles referred to in the text, the following literature is listed: Books: Aperia (1940), Attinger (1964), Bauereisen (1971), Bergel (1972), Bohr et al. (1980), Brankov (1981), Burton (1965), Caro et al. (1978), Folkow and Neil (1971), Fung (1977, 1981), Fung et al. (1972), Knets et al. (1980), Lighthill (1975, 1978), McDonald (1960, 1974), Oka (1974), Patel and Vaishnav (1980), Pedley (1980), Poorinya and Kasyanov (1980), Rushmer (1970), Wetterer and Kenner (1968).Google Scholar
  2. Classics: Euler (1775), Frank (1899; 1926, 1930), Harvey (1628), Joukowsky (1900), Lamb (1897), Moens (1878), Resal (1876), Weber & Weber (1825), Weber (1850), Witzig (1914), Womersley (1957), Young (1808, 1809).Google Scholar
  3. Surveys: Fung (1970), Jones et al. (1971), Kenner (1972), Klip (1962), Lambossy (1950, 1951), Müller (1951, 1959), Rubinow and Keller (1972), Wiedeman (1963).Google Scholar
  4. On A therosis, A therogenesis: Caro et al. (1969, 1971, 1973), Nerem (1981), Nerem et al. (1972, 1974), Schneiderman et al. (1979), Oka (1981).Google Scholar
  5. On Measurements and Instrumentation: Agrawal et al. (1978), Atabek et al. (1975), Deshpande et al. (1976), Deshpande and Giddens (1980), Fry et al. (1964), Gabe (1965), Holenstein et al. (1980), Klip (1958, 1967), Ling et al. (1968, 1973), Lutz et al. (1977), Milnor and Bertram (1978), Patel et al. (1964, 1966), Young and Tsai (1973).Google Scholar
  6. On Nonlinear Effects: Atabek (1968, 1980), Atabek et al. (1975), Pedley (1980) Lambert (1958), Ling et al. (1968), Ling and Atabek (1972), Yao and Berger (1975).Google Scholar
  7. On Wave Propagation: Anliker (1972), Anliker et al. (1966, 1968, 1969, 1971, 1977), Atabek et al. (1961, 1962, 1966), Attinger (1964), Attinger et al. (1966), Branson, (1945), Cox (1968, 1970), Davis (1976), Evans (1962), Hardung (1962), Holenstein et al. (1980), Jacobs (1953), Krovetz (1965), Landowne (1958), Lee (1966), Maxwell & Anliker (1968), Mirsky (1965), Mirsky et al. (1974), Skalak (1966, 1972), Smith (1975, 1976), Stettler et al. (1980), Streeter et al. (1963), Taylor (1959, 1965, 1966), Van der Werff (1973), Weiss (1964).Google Scholar
  8. On Windkessel Theory: Aperia (1940), Elcrat and Lieberstein (1967), Freis and Heath (1964), Hamilton and Dow (1939).Google Scholar
  9. Agrawal, Y., Talbot, L. and Gong, K. (1978). Laser anemometer study of flow development in curved circular pipes. J. Fluid Mechanics 85: 497–518.ADSCrossRefGoogle Scholar
  10. Anliker, M. (1972). Toward a nontraumatic study of the circulatory system. In Biomechanics: Its Foundations and Objectives, Prentice-Hall, Englewood Cliffs, N. J., pp. 337–379.Google Scholar
  11. Anliker, M. and Maxwell, J. A. (1966). The dispersion of waves in blood vessels. In Biomechanics (Y. C. Fung ed.), Amer. Soc. Mech. Engrs., New York, pp. 47–67.Google Scholar
  12. Anliker, M. and Raman, K. R. (1966). Korotkoff sounds at diastole-a phenomenon and dynamic instability of fluid-filled shells. International J. of Solids and structures, 2: 467–492.CrossRefGoogle Scholar
  13. Anliker, M., Histand, M. B. and Ogden, E. (1968). Dispersion and attenuation of small artificial pressure waves in canine aorta. Circulation Research 23: 539–551.CrossRefGoogle Scholar
  14. Anliker, M., Moritz, W. E. and Ogden, E. (1968). Transmission characteristics of axial waves in blood vessels. J. Biomechanics 1: 235–246.CrossRefGoogle Scholar
  15. Anliker, M., Wells, M. K. and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. on BioMedical Eng. BME-16: 262–273.CrossRefGoogle Scholar
  16. Anliker, M., Rockwell, R. L. and Ogden, E. (1971). Nonlinear analysis of flow pulses and shock waves in arteries. Z. angew. Math. Physics 22: 217–246, 563–581.CrossRefGoogle Scholar
  17. Anliker, M., Casty, M., Friedli, P., Kubli, R. and Keller, H. (1977). Noninvasive measurement of blood flow. In Cardiovascular Flow Dynamics and Measurements(N. H. C. Hwang and N. A. Norman, eds.), Univ. Park Press, Baltimore, Md., pp. 43–88.Google Scholar
  18. Aperia, A. (1940). Hemodynamical Studies. Skandinavisches Archiv für Physiologie, Suppl. 16 to Vol. 83.Google Scholar
  19. Atabek, H. B. (1962). Development of flow in the inlet length of a circular tube starting from rest. Z. angew. Math. Phys. 13: 417–430.MATHCrossRefGoogle Scholar
  20. Atabek, H. B. (1968). Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophysical J. 8: 626–649.ADSCrossRefGoogle Scholar
  21. Atabek, H. B. (1980). Blood flow and pulse propagation in arteries. In Basic Hemodynamics and Its Role in Disease Processes(Patel, D. J. and Vaishnav, R. N. eds.), University Park Press, Baltimore, Md., Ch. 7, pp. 255–361.Google Scholar
  22. Atabek, H. B. and Chang, C. C. (1961). Oscillatory flow near the entry of a circular tube. Z. angew. Math. Physiol. 12: 185–201.MathSciNetMATHCrossRefGoogle Scholar
  23. Atabek, H. B. and Lew, H. S. (1966). Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophysical J. 6: 481–502.ADSCrossRefGoogle Scholar
  24. Atabek, H. B., Ling, S. C. and Patel, D. J. (1975). Analysis of coronary flow fields in thoracotomized dogs. Circulation Res. 37: 752–761.CrossRefGoogle Scholar
  25. Attinger, E. O. (1964). Flow patterns and vascular geometry. In Pulsatile Blood Flow, (E. O. Attinger ed.), McGraw Hill, New York, Ch. 9, pp. 179–220.Google Scholar
  26. Attinger, E. O., Sugawara, H., Navarro, A. and Anne, A. (1966). Pulsatile flow patterns in distensible tubes. Circulation Res 18: 447–456.CrossRefGoogle Scholar
  27. Attinger, E. O., Sugawara, H., Navarro, A., Riceeto, A. and Martin, R. (1966). Pressureflow relations in dog arteries. Circulation Res. 19: 230–246.CrossRefGoogle Scholar
  28. Bauereisen, E. (ed.)(1971) Physiologie des Kreislaufs. Band 1. Arteriensystem, Capillarbett, Organkreislauf; Fetal-und PlacentarkreislaufSpringer-Verlag, Heidelberg.Google Scholar
  29. Bergel, D. H. (ed.) (1972). Cardiovascular Fluid Dynamics. Vols. 1 & 2. Academic Press, New York.Google Scholar
  30. Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr. (eds.) (1980). Handbook of Physiology, Sec. 2. The Cardiovascular System. Vol. 2, Vascular Smooth Muscles, American Physiological Society, Bethesda, Md.Google Scholar
  31. Boussinesq, J. (1891). Maniere dont les vitesses, se distrib. depui l’entree-Moindre longueur d’un tube circulaire, pour qu’un regime uniforme s’y etablisse. Comptes Rendus, 113: 9, 49.MATHGoogle Scholar
  32. Brankov, G. (1981). Osnovi Biomechaniki. (Basic Biomechanics)Izdatelstvo “MIR”, Moscow.Google Scholar
  33. Branson, H. (1945). The flow of a viscous fluid in an elastic tube: a model of the femoral artery. Bull. Math. Biophysics 7: 181–188.MathSciNetCrossRefGoogle Scholar
  34. Burton, A. C. (1965). Physiology and Biophysics of the Circulation. Year Book Medical Publishers, Chicago, Ill.Google Scholar
  35. Caro, C. G., Fitzgerald, J. M. and Schroter, R. C. (1969). Arterial wall shear and distribution of early atheroma in man. Nature. 223: 1159–1161.ADSCrossRefGoogle Scholar
  36. Caro, C. G., Fitzgerald, J. M. and Schroter, R. C. (1971). Atheroma and arterial wall shear. Proc. Roy. Soc. London, B 177: 109–159.ADSCrossRefGoogle Scholar
  37. Caro, C. G., and Nerem, R. M. (1973). Transport of 14C-4-Cholesterol between serum and wall in the perfused dog common carotid artery. Circulation Res. 32: 187–205.CrossRefGoogle Scholar
  38. Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.MATHGoogle Scholar
  39. Cox, R. H. (1968). Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys. J. 8: 691–709.ADSCrossRefGoogle Scholar
  40. Cox, R. H. (1970). Blood flow and pressure propagation in the canine femoral artery. J. Biomech. 2: 131–150.CrossRefGoogle Scholar
  41. Davis, S. H. (1976). The stability of time-periodic flows. Annual Review offluid Mechanics, 8: 57–74.ADSCrossRefGoogle Scholar
  42. Deshpande, M. D., Giddens, D. P., and Mabon, R. F. (1976). Steady laminar flow through modelled vascular stenosis. J. Biomechanics 9: 165–174.CrossRefGoogle Scholar
  43. Deshpande, M. D. and Giddens, D. P. (1980). Turbulence measurements in a constricted tube. J. Fluid Mechanics 97: 65–90.ADSCrossRefGoogle Scholar
  44. Elcrat, A. R. and Lieberstein, H. M. (1967). Asymptotic uniqueness for elastic tube flows satisfying a windkessel condition. Math. Biosci. 1: 397–411.MATHCrossRefGoogle Scholar
  45. Euler, L. (1775). Principia pro motu sanguins per arterias determinado. Opera posthuma mathematica et physicaanno 1844 detecta, ediderunt P. H. Fuss et N. Fuss. Petropoli, Apud Eggers et socios, Vol. 2, pp. 814–823.Google Scholar
  46. Evans, R. L. (1962). Pulsatile flow in vessels whose distensibility and size vary with site. Phys. Med. Biol. 7: 105–116.CrossRefGoogle Scholar
  47. Evans, R. L. (1962). A unifying approach to blood flow theory. J. Theoretical Biophysics 3: 392–411.Google Scholar
  48. Folkow, B. and Neil, E. (1971). Circulation, Oxford Univ. Press, New York.Google Scholar
  49. Frank, O. (1899). Die Grundform des arteriellen pulses. Zeitschrift für Biologie, 37: 483–526.Google Scholar
  50. Frank, O. (1926). Die Theorie der pulswellen. Zeitschrift für Biologie, 85: 91–130.Google Scholar
  51. Frank, O. (1930). Schatzung des Schlagvolumens des menschlichen Herzens auf Grund der Wellen-und Weinkessel theorie. Zeitschrift für Biologie, 90: 405–409.Google Scholar
  52. Freis, E. D. and Heath, W. C. (1964). Hydrodynamics of aortic blood flow. Circulation Res. 14: 105–116.CrossRefGoogle Scholar
  53. Fronek, A., Coel, M. and Bernstein, E. F. (1978). Post-occlusive hyperemia and the toe-pulse-reappearance time in the evaluation of arterial occlusive disease. In Non-Invasive Diagnostic Techniques in Vascular Disease(Bernstein, E. F. ed.), Mosby, St. Louis.Google Scholar
  54. Fry, D. L., Griggs, D. M., Jr. and Greenfield, J. C. Jr. (1964). In vivo studies of pulsatile blood flow: the relationship of the pressure gradient to the blood velocity. In Pulsatile Blood Flow(Attinger, E. O. ed.), McGraw-Hill, New York, Chap. 5, pp. 101–114.Google Scholar
  55. Fung, Y. C. (1970). Biomechanics: A survey of the blood flow problem. In Advances of Applied Mechanics(Yih, C. S. ed.), Academic Press, New York, Vol. II. pp. 65–130.Google Scholar
  56. Fung, Y. C. (1977). A First Course in Continuum Mechanics. 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  57. Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer- Verlag, New York.Google Scholar
  58. Fung, Y. C., Perrone, N. and Anliker, M. (1972). Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  59. Fung, Y. C., Fronek, K. and Patitucci, P. (1979). On pseudo-elasticity of arteries and the choice of its mathematical expression. Am. J. of Physiol., 237(5): H620–H631.Google Scholar
  60. Gabe, I. T. (1965). An analogue computer deriving oscillatory arterial blood flow from the pressure gradient. Phys. Med. Biol. 10: 407–415.CrossRefGoogle Scholar
  61. Hamilton, W. F. and Dow, P. (1939). An experimental study of the standing waves in the pulse propagated through the aorta. Am. J. Physiol. 125: 48–59.Google Scholar
  62. Hardung, V. (1962). Propagation of pulse waves in viscoelastic tubing. In Handbook of Physiology, Sec. 2, Circulation(W. F. Hamilton, ed.), Am. Physiological Society, Washington, D.C., Ch. 7, pp. 107–135.Google Scholar
  63. Harvey, W. (1628). Exercitatis anatomica de motu cordis et sanguinis in animalibus. An English translation with annotations by D. C. Leake, 4th ed. Thomas, Springfield, Ill., (1958).Google Scholar
  64. Holenstein, R., Niederer, P. and Anliker, M. (1980). A viscoelastic model for use in predicting arterial pulse waves. J. Biomechanical Eng. 102: 318–325.CrossRefGoogle Scholar
  65. Jacobs, R. B. (1953). On the propagation of a disturbance through a viscous liquid flowing in a distensible tube of appreciable mass. Bull. Math. Biophysics 5: 395–409.MathSciNetCrossRefGoogle Scholar
  66. Jones, E., Anliker, M., and Chang, I. D. (1971). Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. I & II. Biophysical J. 11, 1085–1120, 1121–1134.ADSCrossRefGoogle Scholar
  67. Jones, R. T. (1969). Blood flow. Annual Review of Fluid Mechanics, 1: 223–244.ADSCrossRefGoogle Scholar
  68. Joukowsky, N. W. (1900). Ueber den hydraulischen Stoss in Wasserheizungsrohren. Memoires de l’Academie Imperiale des Science de St. Petersburg, 8 series, Vol. 9, No. 5.Google Scholar
  69. Kamiya, A., and Togawa, T. (1972). Optimal branching of the vascular tree. (Minimum volume theory) Bull. Math. Biophysics, 34: 431–438.CrossRefGoogle Scholar
  70. Kenner, T. (1972). Flow and pressure in the arteries. In Biomechanics: Its Foundations and Objectives. (Fung, Y. C., Perrone, N. and Anliker, M. eds.), Prentice-Hall, Englewood Cliffs, N.J., pp. 381–434.Google Scholar
  71. King, A. L. (1947). On a generalization of the Poiseuille law. Am. J. Physiol. 15: 240–242.ADSCrossRefGoogle Scholar
  72. King, A. L. (1947). Waves in elastic tubes: velocity of the pulse wave in large arteries. J. Appl. Phys. 18: 595–600.ADSCrossRefGoogle Scholar
  73. Kivity, Y. and Collins, R. (1974). Nonlinear wave propagation in viscoelastic tubes: application to aortic rupture. J. of Biomechanics 7: 1–10.CrossRefGoogle Scholar
  74. Klip, W. (1958). Difficulties in the measurement of pulse wave velocity. Am. Heart J. 56: 806–813.CrossRefGoogle Scholar
  75. Klip, W. (1962). Velocity and Damping of the Pulse Wave. Martinus Nijhoff, Hague.Google Scholar
  76. Klip, W. (1967). Formulas for phase velocity and damping of longitudinal waves in thick-walled viscoelastic tubes. J. Appl. Physics. 38: 3745–3755.ADSCrossRefGoogle Scholar
  77. Knets, E. V., Pfafrod, G. O., Saulgozis, U. J. (14. B. KHeTC, F. O. ΠlΦaΦ pod, 10,)Ж. CayΛ. ro3иC). Deformation and Failure of Solid Biological Tissues (Deformerovanie e Razryshenie Tverdih Biologichskeh Tkanee), Riga, “zenatne”.Google Scholar
  78. Korteweg, D. J. (1878). Ueber die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren. Ann. der Physik. u. Chemie. 5(3): 525–542.ADSMATHCrossRefGoogle Scholar
  79. Krovetz, L. J. (1965). The effect of vessel branching on haemodynamic stability. Phys. in Med. and Biol. 10: 417–427.ADSCrossRefGoogle Scholar
  80. Kuchar, N. R. and Ostrach, S. (1966). Flows in the entrance regions of circular elastic tubes. In Biomedical Fluid Mechanics Symposium, Amer. Soc. Mech. Engrs., pp. 45–69.Google Scholar
  81. Lamb, H. (1897–1898). On the velocity of sound in a tube, as affected by the elasticity of the walls. Phil. Soc. of Manchester Memoirs and Proc., lit. A, 42: 1–16.Google Scholar
  82. Lambert, J. W. (1958). On the nonlinearities of fluid flow in nonrigid tubes. J. Franklin Inst. 266: 83–102.MathSciNetCrossRefGoogle Scholar
  83. Lambossy, P. (1950, 1951). Apercu historique et critique sur le probleme de la propagation des ondes dans un liquide compressible enferme dan un tube elastique. Helv. Physiol. Pharm. Acta. 8: 209–227, 9: 145–161.Google Scholar
  84. Lanczos, C. (1952). Introduction. In Tables of Chebyshev Polynomials. Nat. Bureau of Standards, Appl. Math., Ser. 9, U.S. Govt. Printing Office, Washington, D.C., pp. 7–9.Google Scholar
  85. Landowne, M. (1958). Characteristics of impact and pulse wave propagation in brachial and radial arteries. J. Appl. Physiol. 12: 91–97.Google Scholar
  86. Lee, J. S. (1966). The pressure-flow relationship in long-wave propagation in large arteries. In Biomechanics (Fung, Y. C. ed.), ASME Symposium, American Society of Mech. Engineers, New York, pp. 96–120.Google Scholar
  87. Lew, H. S., and Fung, Y. C. (1970). Entry flow into blood vessels at arbitrary Reynolds number. J. Biomech. 3: 23–38.CrossRefGoogle Scholar
  88. Lighthill, J. (1975). Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia, Pa.MATHCrossRefGoogle Scholar
  89. Lighthill, M. J. (1978). Waves in Fluids. Cambridge University Press.MATHGoogle Scholar
  90. Ling, S. C., Atabek, H. B., Fry, D. L., Patel, D. J. and Janicki, J. S. (1968). Application of heated film velocity and shear probes to hemodynamic studies. Circulation Res. 23: 789–801.CrossRefGoogle Scholar
  91. Ling, S. C. and Atabek, H. B. (1972). A nonlinear analysis of pulsatile flow in arteries. J. Fluid Mechanics 55: 493–511.ADSMATHCrossRefGoogle Scholar
  92. Ling, S. C., Atabek, H. B., Letzing, W. G. and Patel, D. J. (1973). Nonlinear analysis of aortic flow in living dogs. Circulation Res. 33: 198–212.CrossRefGoogle Scholar
  93. Lutz, R. J., Cannon, J. N., Bischoff, K. B., and Dedrick, R. L. (1977). Wall shear stress distribution in a model canine artery during steady flow. Circulation Res. 41: 391–399.CrossRefGoogle Scholar
  94. Matunobu, Y. and Arakawa, M. (1974). Model experiments on the post-stenotic dilatation in blood vessels. Biorheology 11: 457–464.Google Scholar
  95. Maxwell, J. A. and Anliker, M. (1968). The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophysical J. 8: 920–950.ADSCrossRefGoogle Scholar
  96. McCutcheon, E. P. and Rushmer, R. F. (1967). Korotkoff sounds: An experimental critique. Circulation Res. 20: 149–161.CrossRefGoogle Scholar
  97. McDonald, D. A. (1968). Regional pulse wave-velocity in the arterial tree (dog). J. Appl. Physiol. 24: 73–78.Google Scholar
  98. McDonald, D. A. (1960, 1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, Md. 1st ed, 1960, 2nd ed., 1974.Google Scholar
  99. Milnor, W. R. and Bertram, C. D. (1978). The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. Circulation Res. 43: 870–879.CrossRefGoogle Scholar
  100. Mirsky, I. (1965). Wave propagation in transversely isotropic circular cylinders. Part 1: Theory. J. Acoust. Soc. Amer. 37: 1016–1025.MathSciNetADSCrossRefGoogle Scholar
  101. Mirsky, I., Ghista, D. N. and Sandler, H. (eds.) (1974). Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. John Wiley & Sons, New York.Google Scholar
  102. Moens, A. I. (1878). Die Pulskwive. Brill, Leiden, Netherlands.Google Scholar
  103. Morgan, G. W. and Kiely, J. P. (1954). Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer, 26(3): 323–328.MathSciNetADSCrossRefGoogle Scholar
  104. Morgan, G. W. and Ferrante, W. R. (1955). Wave propagation in elastic tubes filled with streaming liquid. J. Acoust. Soc. Amer. 27(4): 715–725.MathSciNetADSCrossRefGoogle Scholar
  105. Müller, V. A. (1951). Ueber die Abhängigkeit der Fortpflanzungsgeschwindigkeit und der Dämpfung der Druckwellen in dehnbaren Rohren von deren Wellenlänge. Helvetica Physiologica et Pharma. Acta 9: 162–176.Google Scholar
  106. Müller, V. A. (1959). Die Mehrschichtige Rohrwand als Modell für die Aorta. Helv. Physiol. Pharmacol. Acta 17: 131–145.Google Scholar
  107. Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. U.S.A., 12: 207–214.ADSCrossRefGoogle Scholar
  108. Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Also, J. Gen. Physiol. 9: 835–841.CrossRefGoogle Scholar
  109. Nerem, R. M. (ed.) (1981). Hemodynamics in the arterial wall. J. Biomech. Eng. 103: Introduction p. 171. Technical Papers pp. 172–212.CrossRefGoogle Scholar
  110. Nerem, R. M., Seed, W. A. and Wood, N. B. (1972). An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mechanics 52: 137–160.ADSCrossRefGoogle Scholar
  111. Nerem, R. M., Rumberger, J. A., Gross, D. R., Hamlin, R. L. and Geiger, G. L. (1974). Hot-film anemometer velocity measurements of arterial blood flow in horses Circulation Res. 34, 193–203.CrossRefGoogle Scholar
  112. Oka, S. (1974). Rheology-Biorheology. Syokabo, Tokyo. (In Japanese).Google Scholar
  113. Patel, D. J., Greenfield, J. C. Jr., and Fry, D. L. (1964). In vivo pressure-length radius relationship of certain blood vessels in man and dog. In Pulsatile Blood Flow(E. O. Attinger, ed.), McGraw-Hill, New York, pp. 293–305.Google Scholar
  114. Patel, D. J., and Fry, D. L. (1966). Longitudinal tethering of arteries in dogs. Circulation Res. 19: 1011–1021.CrossRefGoogle Scholar
  115. Patel, D. J. and Vaishnav, R. N. (eds.) (1980). Basic Hemodynamics and Its Role in Disease Process, University Park Press, Baltimore, Md.Google Scholar
  116. Pedley, T. J. (1980). The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, London.MATHCrossRefGoogle Scholar
  117. Poorinya, B. A. and Kasyanov, V. A. (1980). Biomechanika Kropnich Krovenosnich Sosoodov Cheloveka (Biomechanics of Large Blood Vessels of Man). Riga, “Zenatne”.Google Scholar
  118. Resal, H. (1876). Sur les petits movements d’un fluid incompressible dans un tuyau elastique. Comptes Rendus, Academie des Sciences, 82: 698–699.Google Scholar
  119. Rosen, R. (1967). Optimality Principles in Biology. Butterworth, London.MATHGoogle Scholar
  120. Rubinow, S. I. and Keller, J. B. (1972). Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theo. Biol. 35(2): 299–313.CrossRefGoogle Scholar
  121. Rushmer, R. F. (1955, 1961, 1970). Cardiovascular Dynamics. Saunders, Philadelphia.Google Scholar
  122. Schiller, L. (1922). Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zahigkeitsmessungen. Z. angew. Math. Mech. 2: 96–106.CrossRefGoogle Scholar
  123. Schlichting, H. (1968). Boundary Layer Theory, 6th ed., McGraw-Hill, New York.Google Scholar
  124. Schneiderman, G., Ellis, C. G., and Goldstick, T. K. (1979). Mass transport to walls of stenosed arteries: variation with Reynolds number and blood flow separation. Biomechanics J. 12: 869–878.CrossRefGoogle Scholar
  125. Skalak, R. (1966). Wave propagation in blood flow. In Biomechanics Symposium (Y. C. Fung, ed.), American Soc. of Mech. Engrs., New York, pp. 20–40.Google Scholar
  126. Skalak, R. (1972). Synthesis of a complete circulation. In Cardiovascular fluid Dynamics(D. H. Bergel, ed.), Vol. 2, Chap. 19, Academic Press, New York, pp. 341–376.Google Scholar
  127. Skalak, R. and Stathis, T. (1966). A porous tapered elastic tube model of a vascular bed. In Biomechanics Symposium (Y. C. Fung, ed.), Amer. Soc. of Mech. Engrs., New York, pp. 68–81.Google Scholar
  128. Smith, F. T. (1975). Pulsatile flow in curved pipes. J. Fluid Mechanics, 71: 15–42.ADSMATHCrossRefGoogle Scholar
  129. Smith, F. T. (1976). Pipeflows distorted by non-symmetric indentation or branching. Mathematika. 23: 62–83.MATHCrossRefGoogle Scholar
  130. Stettler, J. C., Niederer, P. and Anliker, M. (1980). Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I. Mathematical Model and prediction of normal pulse patterns. Annals of Biomedical Eng. 9: 145–164. Part II. (with Casty, M.) Comparison with noninvasive measurements of flow patterns in normal and pathological cases, loc cit., 165–175.CrossRefGoogle Scholar
  131. Streeter, V. L., Keitzer, W. F. and Bohr, D. F. (1963). Pulsatile pressure and flow through distensible vessels. Circulation Res. 13: 3–20.CrossRefGoogle Scholar
  132. Szegö, G. (1939). Orthogonal Polynomials, 4th ed. American Math. Soc. Colloquium Publication, Vol. 23.Google Scholar
  133. Targ, S. M. (1951). Basic Problems of the Theory of Laminar Flows. Moskva. (In Russian).Google Scholar
  134. Taylor, M. G. (1959). An experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall. Phys. Med. Biol. 4: 63–82.CrossRefGoogle Scholar
  135. Taylor, M. G. (1965). Wave travel in a non-uniform transmission line, in relation to pulses in arteries arteries. Phys. Med. Biol. 10: 539–550.CrossRefGoogle Scholar
  136. Taylor, M. G. (1966). Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circulation Res. 18: 585–595.CrossRefGoogle Scholar
  137. Taylor, M. G. (1966). Input impedance of an assembly of randomly branching elastic tubes. Biophysical J. 6: 29–51., 6: 697–716.ADSCrossRefGoogle Scholar
  138. Van der Werff, T. J. (1973). Periodic method of characteristics. J. Comp. Phys. 11: 296–305.ADSMATHCrossRefGoogle Scholar
  139. Walawender, W. P. and Chen, T. Y. (1975). Blood flow in tapered tubes. Microvas. Res. 9: 190–205.CrossRefGoogle Scholar
  140. Weber, E. H. and Weber, W. (1825). Wellenlehre auf experimente begrundet;oder, Über die Wellen tropfbarerfüssigkeiten mit Anwendung aufdie Schall-und- lichtwell. Fleischer, Leipzig.Google Scholar
  141. Weber, E. H. (1850). Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des blutes und insbesondere auf die Pulslehre. Berichte uber die Verhandlungen der königl sachsischen Gesellschaft der Wissenschaft zu Leipzig, Mathematischphysische Klasse.Google Scholar
  142. Weiss, G. H. (1964). On the theory of blood flow in tapered arteries. Biorheology 2: 153–158.Google Scholar
  143. Werlé, H. (1974). Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale. Publication No. 156, ONERA, France.Google Scholar
  144. Wetterer, E. and Kenner, T. (1968). Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin.Google Scholar
  145. Wetterer, E., Bauer, R. D., and Busse, R. (1978). New ways of determining the propagation coefficient and the viscoelastic behavior of arteries in situ. In The Arterial System(Bauer, R. D. & Busse, R. ed.), Springer-Verlag, Berlin, pp. 35–47.CrossRefGoogle Scholar
  146. Wiedeman, M. P. (1963). Dimensions of blood vessels from distributing artery to collecting vein. Circulation Res. 12: 375–378.CrossRefGoogle Scholar
  147. Witzig, K. (1914). Über erzwungene Wellenbewegungen zaher, inkompressibler Flüssigkeiten in elastischen Rohren. Inaugural Dissertation, Universitat Bern, K. J. Wyss, Bern.Google Scholar
  148. Womersley, J. R. (1955). Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127: 553–563.Google Scholar
  149. Womersley, J. R. (1955). Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: the linear approximation for long waves. Phil. Mag. 46(Ser. 7): 199–221.MathSciNetMATHGoogle Scholar
  150. Womersley, J. R. (1957). The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Center, Technical Report WADCTR-56–614, 123pp.Google Scholar
  151. Womersley, J. R. (1958). Oscillatory flow in arteries. I. The constrained elastic tube as a model of arterial flow and pulse transmission. II. The reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys. Med. Biol. 2: 177–187, 313–323.Google Scholar
  152. Wylie, E. R. (1966). Flow through tapered tubes with nonlinear wall properties. In Biomechanics Sympoisum(Fung, Y. C. ed.), Amer. Soc. Mech. Engrs., New York, pp. 82–95.Google Scholar
  153. Yao, L. S. and Berger, S. A. (1975). Entry flow in a curved pipe. J. Fluid Mechanics. 67: 177–196.ADSMATHCrossRefGoogle Scholar
  154. Young, D. F. and Tsai, F. Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow. J. Biomechanics, 6: 395–410.CrossRefGoogle Scholar
  155. Young, T. (1808). Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil. Trans. Roy. Soc. London, 98: 164–186.CrossRefGoogle Scholar
  156. Young, T. (1809). On the functions of the heart and arteries. Phil. Trans. Roy. Soc. London, 99: 1–31.Google Scholar
  157. Zamir, M. (1976). The role of shear forces in arterial branching. J. General Biology 67: 213–222.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations