Advertisement

Biodynamics pp 22-76 | Cite as

The Heart

  • Y. C. Fung

Abstract

The heart is the prime mover of blood. By periodic stimulation of its muscles it contracts periodically and pumps blood throughout the body. How the pump works is the subject of this chapter.

Keywords

Left Ventricle Aortic Valve Mitral Valve Heart Valve Papillary Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellhouse, B. J. (1972). The fluid mechanics of heart valves. In Cardiovascular Fluid Dynamics(D. H. Bergel ed.), Vol. 1, Academic Press, New York, Ch. 8, pp. 261–285.Google Scholar
  2. Bellhouse, B. J. and Bellhouse, F. H. (1969). Fluid mechanics of model normal and stenosed aortic valves. Circulation Research, 25: 693–704.Google Scholar
  3. Bellhouse, B. J. and Bellhouse, F. H. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovascular Research 6: 199–210.CrossRefGoogle Scholar
  4. Berne, R. M., Sperelakis, N. (ed.) (1979). Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1. The Heart. American Physiological Society, Bethesda, Md.Google Scholar
  5. Bohr, D. F., Somlyo, A. P., and Spark, H. V., Jr. (eds.) (1980). Handbook of Physiology. Sec. 2. The Cardiovascular System. Vol. 2. Vascular Smooth Muscle. American Physiological Society, Bethesda, Md.Google Scholar
  6. Brady, A. J. (1979). Mechanical properties of cardiac fibers. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md, pp. 461–474.Google Scholar
  7. Chadwick, R. S. (1981). The myocardium as a fluid-fiber continuum: passive equilibrium configurations. In 1981 Advances in Bioengineering(Viano, D. C. ed.), American Society of Mechanical Engineers, New York, pp. 135–138.Google Scholar
  8. Chuong, C. J. and Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. J. Biomechanical Engineering. 105: 268–274.CrossRefGoogle Scholar
  9. Danielson, D. A. (1977). Mechanics of muscular organs. Journal of Biomechanics 10: 355–356.CrossRefGoogle Scholar
  10. Durrer, D., and van der Tweel, L. H. (1957). Excitation of the left ventricular wall of the dog and goat. Ann. New York Academy of Science, 65: 779–802.ADSCrossRefGoogle Scholar
  11. Edman, K. A. P. and Nilsson, E. (1972). Relationship between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85: 488–500.CrossRefGoogle Scholar
  12. Frank, O. (1899). Die grundform des arteriellen pulses. Erste Abhandlung, Mathematische Analyse. Z. Biol. 37: 483–526.Google Scholar
  13. Fung Y. C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  14. Fung, Y. C. (1970). Mathematical representation of the mechanical properties of the heart muscle. J. of Biomechanics. 3: 381–404.CrossRefGoogle Scholar
  15. Fung, Y. C. (1971a). Muscle controlled flow. In Development in Mechanics, Proc. of 12th Midwest Mechanics Conf. Vol. 6, Univ. of Notre Dame, Ind, art. 3, pp. 33–62.Google Scholar
  16. Fung, Y. C. (1971b). Peristaltic pumping: A bioengineering model. In Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis. (Boyarsky, S., Gottschalk, C. W., Tanago, E. A. and Zimskind, P. D., eds.) Academic Press, New York.Google Scholar
  17. Fung, Y. C. (1977). A First Course in Continuum Mechanics. 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  18. Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Biological Materials. Springer-Verlag, New York.Google Scholar
  19. Fung, Y. C. (1984). Biodynamits: Flow, Motion, and Stress. Springer-Verlag, New York. In press.Google Scholar
  20. Gay, W. A. and Johnson, E. A. (1967). Anatomical evaluation of the myocardial length-tension diagram. Circulation Research 21: 33–43.CrossRefGoogle Scholar
  21. Gorlin, R. and Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am. Heart J. 41: 1–29.CrossRefGoogle Scholar
  22. Hales, S. (1733). Statical Essays. II. Haemostaticks. Innays and Manby, London, Reprinted by Hafner, New York.Google Scholar
  23. Henderson, Y. and Johnson, F. E. (1912). Two modes of closure of the heart valves. Heart. 4: 69–82.Google Scholar
  24. Hill, A. V. (1939). The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London (Biol.) B. 126: 136–195.ADSCrossRefGoogle Scholar
  25. Hort, W. (1960). Makroskopische und mikrometrische untersuchungen am Myokard verschieden stark gefullter linker kammern. Virchows Arch Path. Anat. 333: 523–564.Google Scholar
  26. Iwazumi, T. (1970). A new field theory of muscle contraction. Ph. D. Thesis, University of Pennsylvania, Pa.Google Scholar
  27. Janz, R. F. and Grimm, A. F. (1973). Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13: 689–704.ADSCrossRefGoogle Scholar
  28. Janz, R. F., Grimm, A. F., Kubert, B. R., and Moriarty, T. F. (1974). Deformation of the diastolic left ventricle. II. Nonlinear geometric effects. J. of Biomechanics 7: 509–516.CrossRefGoogle Scholar
  29. Janz, R. F. and Waldron, R. J. (1976). Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. Bull. Math. Biol. 38: 401–413.Google Scholar
  30. Jones, R. T. (1969). Blood flow. In Annual Review of Fluid Mechanics(W. R. Sears and M. van Dyke, eds.) Annual Reviews, Palo Alto, Ca.Google Scholar
  31. Jones, R. T. (1972). Fluid dynamics of heart assist devices. In Biomechanics: Its Foundations and Objectives. (ed. by Y. C. Fung, N. Perrone, and M. Anliker), PrenticeHall, Englewood Cliffs, N.J., Chapter 21, pp. 549–565.Google Scholar
  32. Lamé, E. (1852). Lecons sur la theorie de l’elasticite. Paris.Google Scholar
  33. Lee, C. S. F. and Talbot, L. (1979). A fluid mechanical study on the closure of heart valves. J. Fluid Mechanics 91(1): 41–63.ADSCrossRefGoogle Scholar
  34. McDonald, D. A. (1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, Md.Google Scholar
  35. Milnor, W. R. (1975). Arterial impedance as ventricular afterload. Circulation Res. 36: 565–570.CrossRefGoogle Scholar
  36. Mirsky, I. (1973). Ventricular and arterial wall stresses based on large deformation analysis. Biophysical J. 13: 1141–1159.MathSciNetADSCrossRefGoogle Scholar
  37. Mirsky, I., Ghista, D. N., and Sandler, H. (eds.) (1974). Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. John Wiley & Sons Inc., New York.Google Scholar
  38. Mirsky, I. (1979). Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md., pp. 497–531.Google Scholar
  39. Netter, F. (1969). The Ciba Collection of Medical Illustrations, Vol. 5, Heart, CIBA Publications Dept., Summit, N.J.Google Scholar
  40. Parmley, W. W. and Sonnenblick, E. H. (1967). Series elasticity of heart muscle: Its relation to contractile element velocity and proposed muscle models, Circulation Res. 20: 112–123.CrossRefGoogle Scholar
  41. Parmley, W. W., Brutsaert, D. L. and Sonnenblick, E. H. (1969). The effects of altered loading on contractile events in isolated cat papillary muscle. Circulation Res. 24: 521–532.CrossRefGoogle Scholar
  42. Parmley, W. and Talbot, L. (1979). Heart as a pump. In Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1, The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md., pp. 429–460.Google Scholar
  43. Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25: 220–252.MathSciNetADSMATHCrossRefGoogle Scholar
  44. Peskin, C. S. and Wolfe, A. W. (1978). The aortic sinus vortex. Federation Proc. 37: 2784–2792.Google Scholar
  45. Pinto, J. G. and Fung, Y. C. (1973a). Mechanical properties of the heart muscle in the passive state. J. Biomechanics 6: 597–616.CrossRefGoogle Scholar
  46. Pinto, J. G. and Fung, Y. C. (1973b). Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomechanics 6: 617–630.CrossRefGoogle Scholar
  47. Scher, A. M. and Spach, M. S. (1979). Cardiac depolarization and repolarization and the electrocardiogram. In Handbook of Physiology, Sec. 2, Vol. 1, The Heart. (Berne, R. M. and Sperelakis, N., eds.), American Physiological Society, Bethesda, Md., pp. 357–392.Google Scholar
  48. Skalak, R. (1982). Approximate formulas for myocardial fiber stresses. J. Biomechanical Engineering. 104: 162–163.CrossRefGoogle Scholar
  49. Sonnenblick, E. H. (1962). Implications of muscle mechanics in the heart. Federation Proc. 21: 975–990.Google Scholar
  50. Sonnenblick, E. H. (1964). Series elastic and contractile elements in heart muscle: changes in muscle length. Am. J. Physiol. 207: 1330–1338.Google Scholar
  51. Sonnenblick, E. H., Braunwald, E., Covell, J. W., and Ross, Jr., J. (1966). Alterations in resting length-tension relations of cardiac muscle induced by changes in contractile force. Circulation Res. 19: 980–988.CrossRefGoogle Scholar
  52. Sonnenblick, E. H., Spotnitz, H. and Spiro, D. (1964). The relation of sarcomere structure to the pressure-volume curve of the intact dog ventricle. Supp. III to Circulation, Vol. 29–30, p. 111–163.Google Scholar
  53. Sonnenblick, E. H., Ross, Jr., Jr, Covell, J. W., Spotnitz, H. M. and Spiro, D. (1967). Ultrastructure of the heart in systole and diastole: changes in sarcomere length. Circulation Res. 21: 423–431.CrossRefGoogle Scholar
  54. Streeter, D. Jr. (1979). Gross morphology and fiber geometry of the heart. In Handbook of Physiology, Sec. 2, Cardiovascular System. Vol. 1. The Heart(Berne, R. M. and Sperelakis, N. eds.), American Physiology Society, Bethesda, Md., pp. 61–112.Google Scholar
  55. Streeter, D., Jr., Spotnitz, H. M., Patel, D. J., Ross, J. Jr., and Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Res. 24: 339–347.CrossRefGoogle Scholar
  56. Streeter, D., Jr., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and Wall Geometry. II. Fiber angle and sarcomere length. Circulation Res. 33: 639–655(I), 656–664(II).CrossRefGoogle Scholar
  57. Suga, H., Sagawa, K. and Shoukas, A. A. (1973). Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circulation 32: 314–322.CrossRefGoogle Scholar
  58. Waldman, L. K. (1983). On the mechanical coupling of the Heart to the Circulation. Ph.D. thesis. University of California, San Diego.Google Scholar
  59. Wetterer, E. and Kenner, T. (1968). Die Dynamik des Arterien pulses. Springer-Verlag, New York & Berlin.Google Scholar
  60. Wong, A. Y. K. and Rautaharju, P. M. (1968). Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. Heart J. 75: 649–662.CrossRefGoogle Scholar
  61. Yoran, C., Covell, J. W., and Ross, J., Jr. (1973). Structural basis for the ascending limb of left ventricular function. Circulation Res. 32: 297–303.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations