Advertisement

Steady Stokes Flow in Exterior Domains

  • Giovanni P. Galdi
Part of the Springer Tracts in Natural Philosophy book series (STPHI, volume 38)

Abstract

In this chapter we shall analyse the Stokes problem in an exterior domain. Specifically, assuming that the region of flow Ω is a domain coinciding with the complement of a compact region (not necessarily connected) we wish to establish existence, uniqueness, and the validity of corresponding estimates for the velocity field v and the pressure field p of a steady flow in Ω governed by the Stokes approximation, i.e.,
$$\begin{gathered} \left. {\begin{array}{*{20}{c}} {\Delta v = \nabla p + f} \\ {\nabla \cdot v = 0} \\ \end{array} } \right\}in\Omega \hfill \\ v = {{v}_{*}}at\partial \Omega , \hfill \\ \end{gathered}$$
(0.1)
where f, v* are prescribed fields and where, as usual, we have taken the coefficient of kinematic viscosity to be one.

Keywords

Pressure Field Compatibility Condition Strong Solution Sobolev Inequality Stoke Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes for the Chapter

  1. Boggio, T., 1910, Sul Moto Stazionario di una Sfera in un Liquido Viscoso, Rend. Cire. Mat. Palermo, 30, 65–81 [Notes for IV, Notes for viGoogle Scholar
  2. Oseen, C.W., 1927, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig, Akad. Verlagsgesellschaft M.B.H. [Notes for IV, Notes for V, VII.3, Introduction to VII]Google Scholar
  3. Lamb, H., 1932, Hydrodynamics, Cambridge Univ. Press [Notes for V]Google Scholar
  4. Odqvist, F.K.G., 1930, Über die Randwertaufgaben der Hydrodynamik Zäher Flüssigkeiten, Math. Z., 32, 329–375 [IV.3, IV.6, IV.8, V.5, Notes for V]MathSciNetGoogle Scholar
  5. Ladyzhenskaya, O.A., 1959b, Investigation of the Navier-Stokes Equation for a Stationary Flow of an Incompressible Fluid, Uspehi Mat. Nauk., (3) 14, 75–97 (in Russian) [1.3, Introduction to I V, IV.l, Notes for V, Introduction to VI]Google Scholar
  6. Solonnikov, V.A., and Scadilov, V.E., 1973, On a Boundary Value Problem for Stationary Navier-Stokes Equations, TV. Math. Inst. Steklov, 125, 196–210; English Transl.: Proc. Steklov Math. Inst. 12r 1973, 186–199 [1.1, Notes for I II, Notes for IV, Notes for V]Google Scholar
  7. Finn, R., 1965, On the Exterior Stationary Problem for the Navier-Stokes Equations, and Associated Perturbation Problems, Arch. Rational Mech. Anal., 19, 363–406 [II.5, Notes for II, V.5, Notes for V, VII.2]Google Scholar
  8. Ladyzhenskaya, O.A., 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach [1.2, Notes for III, IV. 4, Notes for IV, Notes for V]Google Scholar
  9. Ladyzhenskaya, O.A., and Solonnikov, V.A., 1976, Some Problems of Vector Analysis and Generalized Formulations of Boundary-Value Problems for the Navier-Stokes Equations, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 59, 81–116; English Transl.: J. Soviet Math.y10, 1978, 257–286 [III.4, III.5, Notes for III]Google Scholar
  10. Fujita, H., 1961, On the Existence and Regularity of the Steady-State Solutions of the Navier-Stokes Equation, J. Fac. Sei. Univ. Tokyo, (1A) 9, 59–102 [V.3, Notes for V, VII.6]Google Scholar
  11. Chang, I-D. and Finn, R., 1961, On the Solutions of a Class of Equations Occurring in Continuum Mechanics, with Application to the Stokes Paradox, Arch. Rational Mech. Anal., 7, 388–401 [Notes for V, Notes for VII]MathSciNetMATHCrossRefGoogle Scholar
  12. Finn, R., and Noll, W., 1957, On the Uniqueness and Non-Existence of Stokes Flows, Arch. Rational Mech. Anal, 1, 97–106 [Notes for V]MathSciNetGoogle Scholar
  13. Galdi, G.P., and Simader, C.G., 1990, Existence, Uniqueness and L9-Estimates for the Stokes Problem in an Exterior Domain, Arch. Rational Mech. Anal, 112, 291–318 [II.6, Introduction to IV, Notes for IV, V.5, Notes for V]MathSciNetMATHGoogle Scholar
  14. Maremonti, P., and Solonnikov, V.A., 1986, Su una Diseguaglianza per le Soluzioni del Problema di Stokes in Domini Esterni, Preprint, Dipartimento di Matematica, Università di Napoli [Notes for V]Google Scholar
  15. Maremonti, P., and Solonnikov, V.A., 1985, Estimates for the Laplace Operator in Exterior Domains, Zap. Nauch. Sem. Len. Otdel. Mat. Inst. Steklov (LOMI), 146, 92–102 (in Russian) [Notes for V]Google Scholar
  16. Borchers, W., and Sohr, H., 1987, On the Semigroup of the Stokes Operator for Exterior Domains in ¿^-Spaces, Math. Z., 196, 415–425 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  17. Maslennikova, V.N., and Timoshin, M.A., 1989, Lp Theory for the Stokes System in Exterior Domains, Proc. Symposium on New Methods in Analysis and Differential Equations, University of Voronez Press 63–77 (in Russian) [Notes for V]Google Scholar
  18. Maslennikova, V.N., and Timoshin, M.A., 1990, Lp Theory for the Stokes Equations in Unbounded Domains with a Compact Boundary, Dokl. Akad. Nauk. SSSR, 313, 1341–1346 (in Russian) [Notes for IV, Notes for V]Google Scholar
  19. Maremonti, P., and Solonnikov, V.A., 1990, An Estimate for Solutions of the Stokes System in Exterior Domains, Zap. Nauch. Sem. Len. Otdel Mat. Inst. Steklov (LOMI), 180, 105–120 (in Russian) [Notes for V]Google Scholar
  20. Sohr, H., and Varnhorn, W., 1990, On Decay Properties of the Stokes Equations in Exterior Domains, Navier-Stokes Equations: Theory and Numerical Methods, Heywood, J.G., Masuda, K., Rautmann, R., and Solonnikov V.A. Eds., Lecture Notes in Mathematics, Vol. 1431, Springer-Verlag, 134–151 [Notes for V]Google Scholar
  21. Kozono, H., and Sohr, H., 1991, New A Priori Estimates for the Stokes Equations in Exterior Domains, Indiana Univ. Math. J., 40, 1–28 [Notes for II, Notes for IV]Google Scholar
  22. Deuring, P., 1990a, An Integral Operator Related to the Stokes System in Exterior Domains, Math. Meth. in the Appi. Sci., 13, 323–333; Addendum, Ibid., 14, 445 [Notes for V]Google Scholar
  23. Deuring, P., 1990b, The Resolvent Problem for the Stokes System in Exterior Domains: An Elementary Approach, Math. Meth. in the Appi. Sci., 13, 335–349 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  24. Deuring, P., 1990c, The Stokes System in Exterior Domains: I^-Estim-ates for Small Values of a Resolvent Parameter, J. Appl. Math. Phys. (ZAMP), 41, 829–842 [Notes for V]MathSciNetMATHGoogle Scholar
  25. Deuring, P., 1991, The Stokes System in Exterior Domains: Existence, Uniqueness, and Regularity of Solutions in Lp-Spaces, Commun, in Partial Diff. Equations, 16, 1513–1528 [Notes for V]MathSciNetMATHGoogle Scholar
  26. Choquet-Bruhat, Y., and Christodoulou, D. 1981, Elliptic Systems in Jia}$-Spaces on Manifolds which are Euclidic at Infinity, Acta Math., 146, 129–150 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  27. Specovius-Neugebauer, M., 1986, Exterior Stokes Problems and Decay at Infinity, Math. Meth. in the Appi Sci., 8, 351–367 [Notes for III, Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  28. Farwig, R., 1990, Das Stationäre 3D-Außenraumproblem der Navier- Stokes Gleichungen bei Nichtwerschwindender Anströmgeschwindigkeit in Anisotrop Gewichteten Sobolevräumen, Universität Bonn, SFB 256, #110 [Notes for V]Google Scholar
  29. Girault, V., and Sequeira, A., 1991, A Well-Posed Problem for the Exterior Stokes Equations in Two and Three Dimensions, Arch Rational Mech. Anal., 114, 313–333 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  30. Pulidori, R., 1993, Esistenza ed Unicità per il Problema di Stokes in Domini Esterni in Spazi di Sobolev con Peso, Tesi di Laurea,, Dipartimento di Matematica dell’Università di Ferrara [Notes for IV, Notes for V]Google Scholar
  31. Kozono, H., and Sohr, H., 1992b, On a New Class of Generalized Solutions for the Stokes Equations in Exterior Domains, Ann. Scuola Norm. Pisa (4), 19, 155–181 [Notes for V]Google Scholar
  32. Girault, V., and Sequeira, A., 1991, A Well-Posed Problem for the Exterior Stokes Equations in Two and Three Dimensions, Arch Rational Mech. Anal., 114, 313–333 [Notes for V]Google Scholar
  33. Pulidori, R., 1993, Esistenza ed Unicità per il Problema di Stokes in Domini Esterni in Spazi di Sobolev con Peso, Tesi di Laurea,, Dipartimento di Matematica dell’Università di FerraraGoogle Scholar
  34. Pulidori, R., and Specovius-Neugebauer, M., 1995, Generalized Solutions for the Stokes Equation in Exterior Domains, Navier-StokesGoogle Scholar
  35. Specovius-Neugebauer, M., 1996, The Two-dimensional Exterior Stokes Problem, Existence, Regularity and Decay Properties, Math. Methods Appi Sci., 19, 507–528 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  36. Girault, V., and Raviart, P.A., 1986, Finite Element Methods fv*) Navier-Stokes Equations, Theory and Algorithms, Springer Series in Comp. Math. 5, Springer-Verlag, Berlin-Heidelberg-New York [Notes for III]CrossRefGoogle Scholar
  37. Chang, I-D. and Finn, R., 1961, On the Solutions of a Class of Equations Occurring in Continuum Mechanics, with Application to the Stokes Paradox, Arch. Rational Mech. Anal., 7, 388–401 [Notes for V, Notes for VII]MathSciNetGoogle Scholar
  38. Sequeira, A., 1981, Couplage Entre le Méthode des Éléments Finis et la Méthode des Équations Intégrales. Application au Problème Extérieur de Stokes Stationnaire dans le Plane, These de Doctorat de 3-me Cycle. Université P. et M. Curie [Notes for V]Google Scholar
  39. Sequeira, A., 1983, The Coupling of Boundary Integral and Finite Element Methods for the Bidimensional Exterior Steady Stokes Problem, Math. Meth. in Appi Sci., 5, 356–375 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  40. Sequeira, A., 1986, On the Computer Implementation of a Coupled Boundary and Finite Element Method for the Bidimensional Exterior Steady Stokes Problem, Math. Meth. in Appi. Sci., 8, 117–133 [Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  41. McCracken, M., 1981, The Resolvent Problem for the Stokes Equation on Halfspaces in Lp, SIAM J. Math. Anal., 12, 201–228 [III.l]MathSciNetMATHGoogle Scholar
  42. Pukhnacev, V.V., 1990a, Stokes Approximation in a Problem of the Flow Around a Self-Propelled Body, Boundary Value Problems in Mathematical Physics, Naukova Dumka, Kiev, 65–73 (in Russian) [V.6, Notes for V]Google Scholar
  43. Pukhnacev, V.V., 1990b, The Problem of Momentumless Flow for the Navier-Stokes Equations, Navier-Stokes Equations: Theory and Numerical Methods, Heywood, J.G., Masuda, K., Rautmann, R., and Solonnikov V.A., Eds., Lecture Notes in Mathematics, Vol. 1431, Springer-Verlag, 87–94 [V.6, Notes for V]Google Scholar
  44. Galdi, G.P, 1997, On the Steady Translational Motion of a Self-Propelled Body in a Navier-Stokes Fluid, submitted [V.6, Notes for V]Google Scholar
  45. Novotny, A., and Padula, M., 1995, Note on Decay of Solutions of Steady Navier-Stokes Equations in 3-D Exterior Domains, Differential and Integral Equations, 8, 1833–1842 [Notes for V]MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
  1. 1.Istituto di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations