Advertisement

The Function Spaces of Hydrodynamics

  • Giovanni P. Galdi
Part of the Springer Tracts in Natural Philosophy book series (STPHI, volume 38)

Abstract

Several mathematical problems related to the motion of a viscous, incompressible fluid find their natural formulation in certain spaces of vector functions that can be considered as characteristic of those problems. These functional spaces are of three types, denoted by H q , H q 1 , and D 0 1,q , and are defined as suitable subspaces of solenoidal functions of [L q ] n , [W 0 1,q ] n , and [D 0 1,q ] n , respectively, n ≥ 2. Actually, it is just the solenoidality restriction that makes these spaces peculiar and, as we shall see, poses problems that otherwise would not arise.

Keywords

Function Space Open Ball Neumann Problem Lipschitzian Domain Cone Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Hopf, E., 1950/1951, Über die Anfganswertaufgabe für die Hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213–231 [Notes for III]Google Scholar
  2. Prodi, G., 1959, Rassegna di Ricerche Intorno alle Equazioni di Navier- Stokes, Quaderni dell’Istituto di Matematica dell’Università degli Studi di Trieste, 2 [Notes for III]Google Scholar
  3. Ladyzhenskaya, O.A., 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach [1.2, Notes for III, IV. 4, Notes for IV, Notes for V]Google Scholar
  4. Temam, R., 1973, On the Theory and Numerical Analysis of the Navier- Stokes Equations, Lecture Note #9, Dept. of Mathematics, University of Maryland [Notes for III, Notes for IV]Google Scholar
  5. Temam, R., 1977, Navier-Stokes Equations, North-Holland Pub. Co., Amsterdam-New York-Tokyo [III.2, Notes for I II, Introduction to IV, Notes for IV]Google Scholar
  6. Giga, Y., and Sohr, H., 1989, On the Stokes Operator in Exterior Domains, J. Fac. Sci. Univ. Tokyo, 1A Math., 36, 103–130 [Notes for III]Google Scholar
  7. Fujiwara, D., and Morimoto, H., 1977 An Lr-Theorem of the Helm-holtz Decomposition of Vector Fields J. Fac. Sci. Univ. Tokyo (1A) 24, 685–700 [III.l, Notes for III]Google Scholar
  8. simon, J., 1991, Primitives de Distributions et Applications, Séminaire d’Analyse, Université B. Pascal, 20, 1–17 [Notes for III]Google Scholar
  9. Simader, C.G., and Sohr, H., 1992, The Helmholtz Decomposition in Lq and Related Topics, Mathematical Problems Related to the Navier- Stokes Equation, Galdi, G.P., Ed., Advances in Mathematics for Applied Science, 11, World Scientific, 1–35 [III.l, Notes for III]Google Scholar
  10. Farwig, R,, 1993, The Weak Neumann Problem and the Helmholtz Decomposition in General Aperture Domains, Progress in Partial Differential Equations: The Metz Surveys 2, Chipot, M., Ed., Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Vol. 296, 86–96 [Notes for III]Google Scholar
  11. Thäter, G., 1995, Lq Helmholtz Decomposition and Regularity Results for the Infinite Cylinder, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Mathematik-Informatik, Universität Paderborn [Notes for III]Google Scholar
  12. Farwig, R.,and Sohr, H., 1996, Helmholtz Decomposition and Stokes Resolvent System for Aperture Domains in ¿^-Spaces, Analysis, 16, 1–26 [Notes for III]MathSciNetGoogle Scholar
  13. Specovius-Neugebauer, M., 1990, The Helmholtz Decomposition of Weighted //-Spaces, Commun, in Partial Diff. Equations, 15, 273–288 [Notes for III]Google Scholar
  14. Temam, R., 1973, On the Theory and Numerical Analysis of the Navier- Stokes Equations, Lecture Note #9, Dept. of Mathematics, University of Maryland [Notes for III, Notes for IV]Google Scholar
  15. Fujiwara, D., and Morimoto, H., 1977 An Lr-Theorem of the Helm-holtz Decomposition of Vector Fields J. Fac. Sci. Univ. Tokyo (1A) 24, 685–700 [III.l, Notes for III]Google Scholar
  16. Cattabriga, L., 1961, Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Padova, 31, 308–340 [Notes for III, Introduction to IV, IV. 1, IV.5. IV.6, Notes for IV]Google Scholar
  17. Babuska, I., and Aziz, A.K., 1972, Survey Lectures on the Mathematical Foundations of the Finite Element Method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Aziz A. K., Ed., Academic Press, New York [Notes for III]Google Scholar
  18. Solonnikov, V.A., and Scadilov, V.E., 1973, On a Boundary Value Problem for Stationary Navier-Stokes Equations, TV. Math. Inst. Steklov, 125, 196–210; English Transl.: Proc. Steklov Math. Inst. 12r 1973, 186–199 [1.1, Notes for I II, Notes for IV, Notes for V]Google Scholar
  19. Solonnikov, V.A., 1983, Stokes and Navier-Stokes Equations in Domains with Non-Compact Boundaries, Collège de France Seminar, Voi IV, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Vol. 84, 240–349 [III.4, Notes for III, Introduction to VI, VI.3]Google Scholar
  20. Pileckas, K., 1983, On Spaces of Solenoidal Vectors, Trudy Mat. Inst. Steklov, 159, 137–149; English TVansl.: Proc. Steklov Math Inst., 159, 1984, 141–154 [III.4, III.5, Notes for III]Google Scholar
  21. von Wahl, W., 1989, Das Außenraumproblem für die Instationären Na-vier-Stokes Gleichungen, Sonderforschungsbereich, 256, Rudolf-Lip-schitz-Vorlesung [Notes for III]Google Scholar
  22. Borchers, W., and Sohr, H., 1990, On the Equations rotv=0 and divu=/ with Zero Boundary Conditions, Hokkaido Math. J., 19, 67–87 [Notes for III]Google Scholar
  23. Sobolev, S.L., 1963a, Applications of Functional Analysis to Mathematical Physics, Amer. Math. Soc. Transi, of Monographs, Vol. 7 [II. 3, Notes for II, Notes for III]Google Scholar
  24. Griesinger, R., 1990a, On the Boundary Value Problem rotu=/, u Vanishing at the Boundary and Related Decomposition of Lq and HQ,q: Existence, Ann. Univ. Ferrara, Sez. VII, 35, 15–44 [Notes for III]MathSciNetGoogle Scholar
  25. Bogovskiï, M.E., 1980, Solution of Some Vector Analysis Problems Connected with Operators Div and Grad, Trudy Seminar S.L.Sobolev, #1, 80, Akademia Nauk SSSR, Sibirskoe Otdelnie Matematiki, Nowosibirsk, 5–40 (in Russian) [III.3, III.4, Notes for III].Google Scholar
  26. Kapitanskii, L.V., and Pileckas, K., 1984, Certain Problems of Vector Analysis, Zap. Nauch. Sem. Len. Otdel. Mat. Inst. Steklov (LOMI), 138, 65–85; English Transl.: J. Soviet Math., 32, 1986, 469–483 [III.3, Notes for III]Google Scholar
  27. Solonnikov, V.A., 1973, Estimates for Solutions of Nonstationary Nav-ier-Stokes Equations, Zap. Nauch. Sem. Len. Otdel Mat. Inst. Steklov (LOMII 38, 153–231; English TVansl.: J. Soviet Math. 8, 1977, 467–528 [Notes for III, Notes for V]Google Scholar
  28. Solonnikov, V.A., 1983, Stokes and Navier-Stokes Equations in Domains with Non-Compact Boundaries, Collège de France Seminar, Voi IV, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Vol. 84, 240–349 [III.4, Notes for III, Introduction to VI, VI.3]MathSciNetGoogle Scholar
  29. Specovius-Neugebauer, M., 1986, Exterior Stokes Problems and Decay at Infinity, Math. Meth. in the Appi Sci., 8, 351–367 [Notes for III, Notes for V]MathSciNetMATHCrossRefGoogle Scholar
  30. Lockart, R., and McOwen, R.C., 1983, On Elliptic Systems in lRn, Acta Math., 150, 125–135 [Notes for III]MathSciNetCrossRefGoogle Scholar
  31. Girault, V., and Raviart, P.A., 1986, Finite Element Methods fv*) Navier-Stokes Equations, Theory and Algorithms, Springer Series in Comp. Math. 5, Springer-Verlag, Berlin-Heidelberg-New York [Notes for III]CrossRefGoogle Scholar
  32. Borchers, W., and Sohr, H., 1990, On the Equations rotv=0 and divu=/ with Zero Boundary Conditions, Hokkaido Math. J., 19, 67–87 [Notes for III]MathSciNetMATHGoogle Scholar
  33. Lions, J.L., 1969, Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris [Notes for III]MATHGoogle Scholar
  34. Temam, R., 1977, Navier-Stokes Equations, North-Holland Pub. Co., Amsterdam-New York-Tokyo [III.2, Notes for I II, Introduction to IV, Notes for IV]Google Scholar
  35. Salvi, R., 1982, Some Problems of Vector Analysis in Solenoidal Spaces, Portugaliae Math., 41, 199–209 [Notes for III]MathSciNetMATHGoogle Scholar
  36. Ladyzhenskaya, O.A., and Solonnikov, V.A., 1976, Some Problems of Vector Analysis and Generalized Formulations of Boundary-Value Problems for the Navier-Stokes Equations, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 59, 81–116; English Transl.: J. Soviet Math.y10, 1978, 257–286 [III.4, III.5, Notes for III]Google Scholar
  37. Pileckas, K., 1980b, Three-Dimensional Solenoidal Vectors,Zap. Nauch. Sem. Len. Otdel. Mat. Inst. Steklov (LOMI), 96, 237–239; English TVansl.: J. Soviet Math. 21, 1983, 821–823 [Notes for III]Google Scholar
  38. Pileckas, K., 1980b, Three-Dimensional Solenoidal Vectors,Zap. Nauch. Sem. Len. Otdel. Mat. Inst. Steklov (LOMI), 96, 237–239; English TVansl.: J. Soviet Math. 21, 1983, 821–823 [Notes for III]Google Scholar
  39. Maslennikova, V.N., and Bogovskii, M.E., 1978, Denseness of Finite Solenoidal Vector Fields, Sib. Mat. Zh., 19,1092–1108 (in Russian) [III.4, Notes for III]Google Scholar
  40. Guirguis, G.H., 1986, On the Existence, Uniqueness and Regularity of the Exterior Stokes Problem in 1R3, Commun. in Partial Diff. Equations, 11, 567–594 [Notes for III]MathSciNetMATHGoogle Scholar
  41. Galdi, G.P., 1992a, On the Energy Equation and on the Uniqueness for D-Solutions to Steady Navier-Stokes Equations in Exterior Domains, Mathematical Problems Related to the Navier-Stokes Equation, Galdi G.P., Ed., Advances in Mathematics for Applied Science, 11, World Scientific, 36–80 [Notes for III]Google Scholar
  42. Galdi, G.P., and Maremonti, P., 1986, Monotonie Decreasing and Asymptotic Behavior of the Kinetic Energy for Weak Solutions of the Navier-Stokes Equations in Exterior Domains, Arch. Rati Mech. Anal94, 253–266 [II.5, Notes for II]Google Scholar
  43. Kozono, H., and Sohr, H., 1992a, Density Properties for Solenoidal Vector Fields, with Applications to the Navier-Stokes Equations, J. Math. Soc. Japan„ 300, 307–330 [Notes for III]MathSciNetCrossRefGoogle Scholar
  44. Masuda, K., 1984, Weak Solutions of Navier-Stokes Equations, Töhoku Math. Journ., 36, 623–646 [Notes for III]MathSciNetMATHGoogle Scholar
  45. Maremonti, P., 1991, Existence and Stability of Time-Periodic Solutions to the Navier-Stokes Equations in the Whole Space, Nonlin-earity, 4, 503–529 [Notes for III]MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
  1. 1.Istituto di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations