Skip to main content

Part of the book series: Advances in Information Security ((ADIS,volume 11))

  • 192 Accesses

Abstract

The primality testing problem (PTP) may be described as the following simple decision (i.e., yes/no) problem:

It would be interesting to know, for example, what the situation is with the determination if a number is a prime, and in general how much we can reduce the number of steps from the method of simply trying for finite combinatorial problems.

Kurt GÖdel (1906–1978)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, “Algorithmic Number Theory–The Complexity Contribution”, Proceedings of the 35thAnnual IEEE Symposium on Foundations of Computer Science, IEEE Press, 1994, 88–113.

    Google Scholar 

  2. L. M. Adleman, C. Pomerance, and R. S. Rumely, “On Distinguishing Prime Numbers from Composite Numbers”, Annals of Mathematics, 117 (1983), 173–206.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. M. Adleman and M. D. A. Huang, Primality Testing and Abelian Varieties over Finite Fields, Lecture Notes in Mathematics 1512, Springer-Verlag, 1992.

    Google Scholar 

  4. M. Agrawal, N. Kayal and N. Saxena, Primes is in P, Dept of Computer Science & Engineering, Indian Institute of Technology Kanpur, India, 6 August 2002.

    Google Scholar 

  5. W. Alford, G. Granville and C. Pomerance, “There Are Infinitely Many Carmichael Numbers”, Annals of Mathematics, 140 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  6. A. O. L. Atkin and F. Morain, “Elliptic Curves and Primality Proving”, Mathematics of Computation, 61 (1993), 29–68.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Bach and J. Shallit, Algorithmic Number Theory I - Efficient Algorithms, MIT Press, 1996.

    Google Scholar 

  8. A. Baker, AConcise Introduction to theTheory of Numbers, Cambridge University Press, 1984.

    Google Scholar 

  9. R. Bhattacharjee and P. Pandey, “Primality Testing”, Dept of Computer Science & Engineering, Indian Institute of Technology Kanpur, India, 2001.

    Google Scholar 

  10. G. Brassard, “A Quantum Jump in Computer Science”, Computer Science Today — Recent Trends and Development, Lecture Notes in Computer Science 1000, Springer-Verlag, 1995, 1–14.

    Google Scholar 

  11. R. P. Brent, “Primality Testing and Integer Factorization”, Proceedings of Australian Academy of Science Annual General Meeting Symposium on the Role of Mathematics in Science, Canberra, 1991, 14–26.

    Google Scholar 

  12. H. Cohen, ACourse in Computational Algebraic Number Theory, Graduate Texts in Mathematics138, Springer-Verlag, 1993.

    Google Scholar 

  13. T. H. Cormen, C. E. Ceiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990.

    Google Scholar 

  14. D. A. Cox, Primes of the Form x 2 + ny2, Wiley, 1989.

    Google Scholar 

  15. J. D. Dixon, “Factorization and Primality tests”, The American Mathematical Monthly, June-July 1984, pp 333–352.

    Google Scholar 

  16. S. Goldwasser and J. Kilian, “Almost All Primes Can be Quickly Certified”, Proceedings of the 18th ACM Symposium on Theory of Computing, Berkeley, 1986, 316–329.

    Google Scholar 

  17. S. Goldwasser and J. Kilian, “Primality Testing Using Elliptic Curves”, Journal of ACM, 46, 4 (1999), 450–472.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Kilian, Uses of Randomness in Algorithms and Protocols, MIT Press, 1990.

    Google Scholar 

  19. D. E. Knuth, The Art of Computer Programming II - Seminumerical Algorithms, 3rd Edition, Addison-Wesley, 1998.

    Google Scholar 

  20. E. Kranakis, Primality and Cryptography, John Wiley & Sons, 1986.

    Google Scholar 

  21. G. Miller, “Riemann’s Hypothesis and Tests for Primality”, Journal of Systems and Computer Science, 13 (1976), 300–317.

    Article  MATH  Google Scholar 

  22. R. G. E. Pinch, “Some Primality Testing Algorithms”, Notices of the American Mathematical Society, 40, 9 (1993), 1203–1210.

    Google Scholar 

  23. C. Pomerance, “Very Short Primality Proofs”, Mathematics of Computation, 48 (1987), 315–322.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., “The Pseudoprimes to 25 • 109i, Mathematics of Computation, 35 (1980), 1003–1026.

    MathSciNet  MATH  Google Scholar 

  25. V. R. Pratt, “Every Prime Has a Succinct Certificate”, SIAM Journal on Computing, 4 (1975), 214–220.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. O. Rabin, “Probabilistic Algorithms for Testing Primality”, Journal of Number Theory, 12 (1980), 128–138.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Ribenboim, “Selling Primes”, Mathematics Magazine, 68, 3(1995), 175182.

    Google Scholar 

  28. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1990.

    Google Scholar 

  29. R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality”, SIAM Journal on Computing, 6, 1(1977), 84–85. “Erratum: A Fast Monte-Carlo Test for Primality”, SIAM Journal on Computing, 7, 1 (1978), 118.

    Article  MathSciNet  Google Scholar 

  30. S. Wagon, “Primality Testing”, The Mathematical Intelligencer, 8, 3 (1986), 58–61.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. S. Wagstaff, Jr., Cryptanalysis of Number Theoretic Ciphers, Chapman & Hall/CRC Press, 2002.

    Google Scholar 

  32. H. S. Wilf, Algorithms and Complexity, 2nd Edition, A. K.Peters, 2002.

    Google Scholar 

  33. H. C. Williams, Édouard Lucas and Primality Testing, John Wiley Sons, 1998.

    Google Scholar 

  34. S. Y. Yan, “Primality Testing of Large Numbers in Maple”, Computers &Mathematics with Applications, 29, 12 (1995), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Y. Yan, Number Theory for Computing, 2nd Edition, Springer-Verlag, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yan, S.Y. (2004). Primality Testing and Prime Generation. In: Primality Testing and Integer Factorization in Public-Key Cryptography. Advances in Information Security, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3816-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3816-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3818-6

  • Online ISBN: 978-1-4757-3816-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics